首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R(
admin
2020-06-05
31
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题:
①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);
②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则R(A)=R(B);
④若R(A)=R(B),则Ax=0与Bx=0同解.
以上命题中,正确的有( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,即可得到正确选项为(B).
下面证明①,③正确.
对于①,由Ax=0的解均是Bx=0的解可知,方程组Ax=0的基础解系必可由Bx=0的基础解系线性表示,也就是Ax=0的基础解系包含解向量的个数不超过Bx=0的基础解系包含解向量的个数,即n-R(A)≤n-R(B),于是R(A)≥R(B).
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n-R(A)=n-R(B),从而R(A)=R(B).
转载请注明原文地址:https://kaotiyun.com/show/V8v4777K
0
考研数学一
相关试题推荐
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
若n阶可逆矩阵A的属于特征值λ的特征向量是α,则在下列矩阵中,α不是其特征向量的是()
设函数f(x)满足关系f"(x)+f’2(x)=x,且f’(0)=0,则().
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
设n阶方阵A的秩为r,且r<n,则在A的n个行向量中
设f(x)在[0,1]二阶可导,且f’’(x)<0,则下列命题正确的是()-
直线1:之间的关系是()
设pn=,n=1,2,…,则下列命题正确的是()
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,gˊ(x)<0,试证明存在ξ∈(a,b)使
设f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,试证:存在两点ξ,η∈(a,b),使得f’(ξ)(b一a)=ηf’(η)(lnb—lna).
随机试题
压力变送器是根据力平衡原理来测量的。
寒、热、痰、湿、瘀、郁,犯及冲任导致冲任阻滞,治宜疏通冲任,代表方有
对重度休克病人纠正代谢性酸中毒时,下列哪项不宜使用:
钢筋混凝土水处理构筑物的浇筑层高度一般为振捣器作用部分长度的1.25倍,最大不超过()mm。
“备案号”栏应填:“原产国”栏应填:
费率是指利率以外的银行提供信贷服务的价格,一般以信贷产品金额为基数,按一定比率计算。()(2010年上半年)
法是一种社会规范,同道德规范、职业规范相比,具有以下特点()。
班主任对一个班集体的发展起()。
下列VisualBasic变量名中,正确的是()。
描述计算机内存容量的参数,正确的是()。
最新回复
(
0
)