首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R(
admin
2020-06-05
28
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题:
①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);
②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则R(A)=R(B);
④若R(A)=R(B),则Ax=0与Bx=0同解.
以上命题中,正确的有( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,即可得到正确选项为(B).
下面证明①,③正确.
对于①,由Ax=0的解均是Bx=0的解可知,方程组Ax=0的基础解系必可由Bx=0的基础解系线性表示,也就是Ax=0的基础解系包含解向量的个数不超过Bx=0的基础解系包含解向量的个数,即n-R(A)≤n-R(B),于是R(A)≥R(B).
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n-R(A)=n-R(B),从而R(A)=R(B).
转载请注明原文地址:https://kaotiyun.com/show/V8v4777K
0
考研数学一
相关试题推荐
下列命题成立的是().
设B为n阶可逆矩阵,A是与B同阶的方阵,且A2+AB+B2=0,则()
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则
设n阶方阵A的秩为r,且r<n,则在A的n个行向量中
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,则下列命题①若Ax=0的解均是Bx=0的解,则秩r(A)≥r(B)②若秩r(A)≥r(B),则Ax=0的解均是Bx=0的解③若Ax=0与Bx=0同解,则秩r(A)=r(B)④若秩r(A
设A是5×4矩阵,r(A)=4,则下列命题中错误的为
随机试题
操作系统能找到磁盘上的文件,是因为有磁盘文件名与存储位置的记录。在Windows中,这个记录表称为_______。
患者,女,52岁,因交通意外致颈椎骨折,右侧面部擦伤,失血约1000ml。经救治后病情稳定,拟行颅骨牵引治疗。患者的体位应为()
关于发回重审,下列哪一说法是不正确的?()
( )功能是针对期货投机者来说的,也是期货市场的基本功能之一。
除供需关系外,下列哪些因素也能影响期货价格?()
下列项目中,按照现行汇率折算的有( )。
大爆炸理论的最直接的证据来自于对遥远星系光线特征的研究。在20世纪20年代美国天文学家埃德温·哈勃测量了18颗恒星(它们距地球的距离是已知的)发出来的光,发现它们都全部存在着红移。哈勃得出结论,这些恒星一定相对于我们(观测者)在后退。因为根据多普勒效应,恒
无风险报酬率为6%,市场上所有股票的平均报酬率为10%,某种股票的β系数为2,则该股票的报酬率为()。(2006年单项选择题)
注视灯光一段时间,然后闭上眼睛,眼前会出现灯的光亮形象,这是感觉的()
马克思对未来新社会发展的目标概括是( )
最新回复
(
0
)