首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2018-09-20
68
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…α
s
及β
1
,…,β
s
均线性无关
C、α
1
,…,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
-β
2
)+…+λ
s
(α
s
一β
s
)=0,
从而得α
1
+β
1
,…,α
s
+β
s
,α
1
-β
2
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/VRW4777K
0
考研数学三
相关试题推荐
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
已知Aαi=iαi(i=1,2,3),其中α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T.求矩阵A.
下列矩阵中不能相似对角化的是
设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
设f(x)在[0,1]上连续,且满足,求证:f(x)在(0,1)内至少存在两个零点.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
参数a取何值时,线性方程组有无数个解?求其通解.
随机试题
休克代偿期的临床表现是
不属于硝酸甘油不良反应的是
正常成年人心胸比值一般不超过
乙醚、氯仿、丙酮、阴离子去垢剂及胆汁中去氧胆酸盐等脂溶剂灭活病毒的机制是热力灭活病毒的机制是
根据中国法学的历史,简述法家有关法律的论述并说明其观点对当今中国的法治建设有何影响。
水泥砂浆楼梯面的工程量是按设计图示尺寸以楼梯水平投影面积计算,下列表述中错误的是()。
Nodiscountwillbegranted_youplaceanorderformorethan1000dozen.
影响财政收入规模的因素主要是( )。
一项工程,甲、乙合作12天完成,乙、丙合作9天完成,丙、丁合作12天完成,如果甲、丁合作,则完成这项工程需要的天数是:
Eveninthecurrenteconomicgloom,bankershavebeenreluctanttopartwithonemassiveallowanceoftheirjobs—thelavishbonu
最新回复
(
0
)