首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,—2)T,则方程组Ax=b的通解x=( )
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,—2)T,则方程组Ax=b的通解x=( )
admin
2019-03-23
40
问题
设矩阵A是秩为2的四阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
—α
3
=(2,0,—5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
—2α
1
=(2,4,1,—2)
T
,则方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
A
解析
由于n—R(A)=4—2=2,由非齐次线性方程组解的结构可知,方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
,故可排除C、D。
由已知条件,
(α
2
+2α
3
)=b,A(α
3
—2α
1
)= —b,所以A项中(1,4,1,1)
T
和B项中(—2,—4,—1,2)
T
都是方程组Ax=b的解。
A项和B项中均有(2,2,—2,1)
T
,因此可知它必是Ax=0的解。
又由于3(α
1
+α
2
—α
3
)—(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
—α
3
),且由非齐次线性方程组的解与对应齐次线性方程组的解之间的关系知,3(α
1
—α
3
)+2(α
2
—α
3
)是Ax=0的解,所以(3,—12,—18,9)
T
是Ax=0的解,那么(1,—4,—6,3)
T
也是Ax=0的解,故选A。
转载请注明原文地址:https://kaotiyun.com/show/VXV4777K
0
考研数学二
相关试题推荐
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
已知齐次方程组同解,求a,b,c.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
判断下列函数的单调性:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
随机试题
A.输入5%葡萄糖盐溶液B.输入10%葡萄糖溶液C.输入3%盐水D.先输胶体溶液,后输晶体溶液E.先输晶体溶液,后输胶体溶液中度缺钠病人,一般补充()
月经后期血虚证的用方为月经后期气滞证的用方为
论述强奸罪的对象。
脚手架必须配合施工进度搭设,一次搭设高度不应超过相邻连墙件以上()步。
当前我国财富分配不均,贫富差距过大。在很多城市,商场、博物馆、影剧院门口摆放着“衣冠不整者禁止入内”的告示牌;听证会上不曾见到过农民工的身影;金融系统对贷款人担保或抵押都设有限制;巨额的择校费也把穷人及其子女挡在名校门外。这段话支持了这样一种观点,即(
简述有关通货膨胀产出效应的争论。
设f(x)二阶连续可导,f′(0)=0,且=-1,则().
有三个关系R、S和T如下:则由关系R和S得到关系T的操作是( )。
______tellsusthatthegovernmentwillgivesupporttoemployers,whoofferpart-timejobs?______impliesthatincreasedpayme
Readthetextsfromanewspaperarticleinwhichfivepeopletalkedaboutwheretheyplayedwhentheywerechildren.Forquestio
最新回复
(
0
)