首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
admin
2018-06-15
66
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,-2,1)
T
,η
2
=(0,1,0,1)
T
是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
选项
A、α
1
,α
3
.
B、α
2
,α
4
.
C、α
2
,α
3
.
D、α
1
,α
2
,α
4
.
答案
C
解析
由Aη
1
=0,知α
1
+α
2
-2α
3
+α
4
=0. ①
由Aη
2
=0,知α
2
+α
4
=0. ②
因为n-r(A)=2,故必有r(A)=2.所以可排除(D).
由②知,α
2
,α
4
线性相关.故应排除(B).
把②代入①得α
1
-2α
3
=0,即α
1
,α
3
线性相关,排除(A).
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(-2α
3
,α
2
,α
3
,-α
2
)=r(α
2
,α
3
)=1与r(A)=2相矛盾.所以选(C).
转载请注明原文地址:https://kaotiyun.com/show/VXg4777K
0
考研数学一
相关试题推荐
设A是m×n阶实矩阵,证明:ATAX=ATb一定有解.
证明:若A为m×n矩阵,B为n×P矩阵,则有r(AB)≥r(A)+r(B)-n.特别地,当AB=O时,有r(A)+r(B)≤n.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
防空洞的截面拟建成矩形加半圆(如图1.2-1),截面的面积为5平方米,问底宽x为多少时才能使建造时所用的材料最省?
设A,B均为n阶矩阵,A有n个互不相同的特征值,且AB=BA.证明:B相似于对角阵.
设n是曲面2x2+3y2+z2=6在点P(1,1,1)处的指向外侧的法向量,求函数u=在此处沿方向n的方向导数.
设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
某闸门的形状与大小如右图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η3=(1,3,9)T,它们的特征值依次为、1,2,3.又设α=(1,1,3)T,求Anα.
随机试题
TherewereredfacesatoneofBritain’sbiggestbanksrecently.Theyhadacceptedatelephoneordertobuy$100,000worthof
下列关于甲状腺功能减退患者激素替代治疗的说法,错误的是
法院开庭审理李某挪用公款一案时,李某提出本案的证人谢某是其仇人,要求回避。关于本案下列说法正确的是?
项目组自提交业务结果之日起()日内将业务工作底稿归档。
下列名称的软件全部属于数据库系统的是()。
—Howaboutcampingthisweekend,justforachange?—OK,_____youwant.
发行国债时,政府委托经纪人在证券交易所出售国债的方法称为()。
【北京政变】华东师范大学2005年中国近现代史真题;中央民族大学2016年历史学科基础真题
RightsoftheCopyrightOwner1.Rightsofreproduction,distribution,anddisplay.Theauthorofaworkpossesses,atthebegin
WhathashappenedtotheCubans?
最新回复
(
0
)