首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设L:(x≥0,y≥0],过点L上一点作切线,求切线与曲线所围成面积的最小值。
设L:(x≥0,y≥0],过点L上一点作切线,求切线与曲线所围成面积的最小值。
admin
2019-05-27
94
问题
设L:
(x≥0,y≥0],过点L上一点作切线,求切线与曲线所围成面积的最小值。
选项
答案
首先求切线与坐标轴围成的面积,设M(x,y)∈L,过点M的L的切线方程为[*] 令Y=0,得X=[*],切线与x轴的交点为P([*],0) 令X=0,得Y=[*],切线与y轴的交点为Q(0,[*]) 切线与椭圆围成的图形面积为S(x,y)=[*] 其次求最优解。 方法一:设F(x,y,λ)=xy+λ([*]+y
2
-1), F’
x
=1/2λx+y=0, ① F’
y
=x+2λy=0, ② F’
λ
=1/4x
2
+y
2
-1=0 ③ 由[*]得λ=-1(λ=1舍去) 带入①,得y=1/2x,再带入③,得[*]于是最小面积为S=2-π/2 方法二:由①②,得y=-1/2λx,x=-2λy [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VcV4777K
0
考研数学二
相关试题推荐
设f(x)=3x2+x2|x|,则使f(n)(0)存在的最高阶数n为()
设α=(1,1,-1)T是A=的一个特征向量.(Ⅰ)确定参数a,b的值及特征向量α所对应的特征值;(Ⅱ)问A是否可以对角化?说明理由.
对函数f(x)=(4-t)ln(1+t)dt().
计算二重积分,其中区域D是由直线x=-2,y=0,y=2及曲线x=所围成的平面区域.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2判断矩阵A可否对角化.
计算二重积分x(y+1)dσ,其中积分区域D是由y轴与曲线所围成。
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
设f(x)可导且f’(x0)=,则当△x→0时,f(x)在x0点处的微分dy是()
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
设函数f(x)=且1+bx>0,则当f(x)在x=0处可导时,f’(0)_________
随机试题
根据《治安管理处罚法》的规定,对()淫秽物品的行为,不能给予治安管理处罚。
依据我国《民法通则》的规定,除法律另有规定外,我国民法不适用于()
简述食物与健康的关系。
京巴犬,3岁,患病6月余,体瘦毛焦,食少,久泻不止,粪便稀溏,舌淡苔白,脉细。该病可辨证为()
一阶系统的闭环极点越靠近s平面的原点,其()。
下列关于保险合同的说法中,正确的有()。
(2011年)甲公司为支付货款,向乙公司签发了一张以A银行为承兑人、金额为20万元的银行承兑汇票。A银行在票据承兑栏中进行了签章。乙公司为向丙公司支付租金,将该票据交付丙公司,但未在票据上背书和签章。丙公司因需向丁公司支付工程款,欲将该票据转让给丁公司。丁
行政机关实施行政许可,不得向申请人提出购买指定商品、接受有偿服务等不正当要求。()
Thenormalhumandailycycleofactivityisofsome7-8hours’sleep【C1】______withsome16~17hours’wakefulnessandthatthesleep
Howexerciseaffectsbodyweightisoneofthemoreintriguingandvexingissuesinphysiology.Exerciseburnscalories.nooned
最新回复
(
0
)