首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________。
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________。
admin
2018-05-25
54
问题
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________。
选项
答案
由齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
可知λ=1是特征方程λ
2
+aλ+b=0的重根,从而可得a=一2,b=1。则原齐次微分方程为y"一2y’+y=x。 设特解y
*
=Ax+B,则(y
*
)’=A,(y
*
)"=0。分别将其代入原微分方程,有一2A+Ax+B=x,比较x的系数知,A=1。于是有一2+B=0,即B=2。所以特解y
*
=x+2。 故非齐次微分方程的通解y=(C
1
+C
2
x)e
x
+x+2,将y(0)=2,y’(0)=0代入,得C
1
=0,C
2
=一1。 因此满足条件的解y=一xe
x
+x+2x(1一e
x
)+2。
解析
转载请注明原文地址:https://kaotiyun.com/show/Vhg4777K
0
考研数学一
相关试题推荐
设A,B为满足AB=O的任意两个非零矩阵,则必有()
计算,其中Ω由平面z=0,z=1及曲面x2+y2=2围成.
试求极限(a>1)
设随机变量且X与Y的相关系数为则P{X=Y)=________.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1一2α1,Aα2一α1+2α2,Aα3一α2+2α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)A能否相似于对角矩阵,说明理由.
设A,B均是4阶方阵,且r(A)=3,A*,B*是矩阵A,B的伴随矩阵,则矩阵方程A*X=B*有解的充要条件是()
设D是由曲线y=x3与直线所围成的有界闭区域,则
设x>0,证明:且仅在x=1处等号成立.
(Ⅰ)已知由参数方程确定了可导函数y=f(χ),求证:χ=0是y=f(χ)的极大值点.(Ⅱ)设F(χ,y)在(χ0,y0)某邻域有连续的二阶偏导数,且F(χ0,y0)=F′χ(χ0,y0)=0,F′y(χ0,y0)>0,F〞χχ(χ0,y0)<0
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组Ax=0的解,则必存在唯一的ξ,使得Bξ=η.
随机试题
经常采用压料方式放料的反应器是()。
FarmerEdRawlingssmilesashelooksathisorangetrees.TheyoungorangesaregrowingwellinFlorida’sweather.Warmsunshin
肝细胞性黄疸患者伴随症状常有
下列各项关于投资性房地产计提折旧或摊销的表述中正确的有()。
某工业企业职工共30人,企业的资产总额为300万元,上年亏损52万元,2019年企业有关生产、经营资料如下:(1)取得产品销售收入230万元、国债利息收入23万元,金融债券利息收入39万元。(2)发生产品销售成本100万元;发生产品销售税金及附加5.6
我国自主研制的综合技术处于国际领先水平计算机系统于2014年6月23日以每秒33.86千万亿次的浮点运算速度获得世界超算“三连冠”。它是()。
扩张性货币政策主要指()。
一个民族的建筑有它自己的构造规则或组合方式,如同语言的“文法”。中国建筑就具有特殊的“文法”。我们的祖先在选择了木料之后逐渐了解了木料的特长,创始了骨架结构初步方法——中国系统的“梁架”。这以后他们发现了木料性能上的弱点。当水平的梁枋将重量转移到
作为一名大学毕业生,如果能够具备较扎实的专业知识和基本的社会交往能力,或者是在就业市场上能够作出适合自己的选择,那么,就不可能找不到自己的位置。小王是一名大学毕业生。他没有找到工作职位,那么根据上述观点能够推出以下哪项结论?
Imagineeatingeverythingdeliciousyouwant—withnoneofthefat.Thatwouldbegreat,wouldn’tit?New"fakefat"products
最新回复
(
0
)