首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量: (2)求矩
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量: (2)求矩
admin
2016-05-09
31
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=2,α
1
=(1,-1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量:
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=-2α
1
, 即α
1
是矩阵B的属于特征值-2的特征向量. 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0. 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 (1,-1,1)[*]=0, 得其基础解系为:[*],故可取[*] 即B的全部特征值的特征向量为:[*],其中k
1
≠0,k
2
,k
3
,不同时为零. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Nrw4777K
0
考研数学一
相关试题推荐
设f(χ)=则f(χ)在χ=0处().
设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=∫01f(x)dx证明:存在一点ξ∈(0,1),使得f’’(ξ)=0
设函数y=f(x)由参数方程(0<t≤1)确定求f(x)在[1,﹢∞)上的值域
设函数y=f(x)由参数方程(0<t≤1)确定证明:y=f(x)在[1,﹢∞)上单调增加
设A是秩为1的3阶实对称矩阵,λ1=2是A的特征值,对应特征向量为a1=(﹣1,1,1)T,则方程组Ax=0的基础解系为()
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)证明:∫0nTxf(x)dx=f(x)dx(n为正整数);
设线性方程组(Ⅰ)(Ⅱ)(1)求线性方程组(Ⅰ)的通解;(2)m,n取何值时,方程组(Ⅰ)与(Ⅱ)有公共非零解;(3)m,n取何值时,方程组(Ⅰ)与(Ⅱ)同解.
已知空间区域Ω由|x|+|y|+|z|≤1,则(x+y+z-1)dxdydz=().
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
随机试题
A.粗死亡率B.年龄别死亡率C.标准化死亡率D.平均预期寿命E.婴儿死亡率计算某年平均每千人口中的死亡数是
右卵巢动脉是从哪条动脉分支来的
对于噪声源现状评价,应当评价在评价范围内现有的()等。
当承包人索赔后,工程师可以对索赔提出质疑的情况包括( )。
重大事件揭示中,半年度报告只报告期内改聘会计师事务所的情况,无需披露支付给聘任会计师事务所的报酬及事务所已提供审计服务的年限等。()
下列关于审计证据可靠性的表述中,错误的是()。
下图是我国“一五”计划期间各部门的投资比例示意图,此图反映的是()。
以太网上采用的介质访问控制方法是()。
有科学实验表明,大多数人并没有同时处理多项任务的能力。只要一上网,人们的工作记忆就会严重超载,导致大脑额叶难以聚精会神地关注任何一件小事。同时,由于神经通路具有可塑性,上网越多,对大脑适应精力分散状态的训练就越多,这也是为什么习惯上网的人,只要离开互联网,
A、 B、 C、 C
最新回复
(
0
)