首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
admin
2019-05-14
24
问题
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
(Ⅰ)在(a,b)内,g(x)≠0;
(Ⅱ)在(a,b)内至少存在一点ξ,使
。
选项
答案
(Ⅰ)假设对任意的c∈(a,b)且g(c)=0。 由于g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上分别运用罗尔定理可得g’(ξ
1
)=g’(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g’(x)在[ξ
1
,ξ
2
]上运用罗尔定理,可得g"(ξ
3
)=0,其中ξ
3
∈(ξ
1
,ξ
2
)。 因已知g"(x)≠0,与题设矛盾,故g(c)≠0,即在(a,b)内,g(x)≠0。 (Ⅱ)构造辅助函数F(x)=f(x)g’(x)—f’(x)g(x),则有F(a)=0,F(b)=0,在[a,b]上满足罗尔定理。 故至少存在一点ξ∈(a,b),使得F’(ξ)=f(ξ)g"(ξ)—f"(ξ)g(ξ)=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Vl04777K
0
考研数学一
相关试题推荐
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________。
求直线L1:间的夹角。
设a,b,c为非零向量,则与a不垂直的向量是()
已知y1=xex+e2x,y2=xex一e-x,y3=xex+e2x+e-x为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b,ci<0,i=1,2,…,n,证明存在ξ∈[a,b],使得
求下列函数在指定点处的导数:(Ⅰ)y=f(x)=arcsinx.,求f’(0);(Ⅱ)设f(x)=φ(a+bx)一φ(a一bx),其中φ(x)在x=a处可导,求f’(0);(Ⅲ)设函数f(x)在x=0处可导,且f’(0)=,对任意的x,有f(3+x
判断级数(p>0为常数)的敛散性。
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
设随机变量X与Y独立,其中X服从参数p=0.7的0-1分布,Y服从参数λ=1的指数分布,令U=X-Y,求U的分布函数G(u).
确定常数a和b>0的值,使函数f(χ)=,在(-∞,+∞)上连续.
随机试题
简述军事型组织的缺陷。
下列哪种单体适合进行阳离子型聚合反应?()
两小样本均数得比较,经,检验差别有显著性时,户越小,说明
职业病是由何种因素引起的职业病一旦被确诊应作何项工作
悬挑长度为12m的混凝土现浇阳台,拆除模板时混凝土强度应达到设计强度标准值的()以上。
张某于2016年1月购买一辆小轿车自用,当月缴纳了车辆购置税2万元,2017年2月,因该车存在严重质量问题,张某与厂家协商退货,并向税务机关申请车辆购置税的退税。张某可得到的车辆购置税退税是()万元。
下面是某中学生物老师对“主动运输”这部分内容未完成的课堂教学设计(节选),请根据提示,侧重知识目标的达成,完成相应的教学设计。主动运输细胞通过被动运输吸收物质时,虽然不需要消耗能量,但需要膜两侧的浓度差。而一般情况下,植物根系所处的土壤
美育就是对学生进行()。
下牙槽神经口内法阻滞麻醉时,为使针尖避开下颌小舌的阻挡,接近下牙槽神经注射,针尖应在()。
抗日民主政权时期的从刑包括()。
最新回复
(
0
)