首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (Ⅰ)在(a,b)内,g(x)≠0; (Ⅱ)在(a,b)内至少存在一点ξ,使。
admin
2019-05-14
36
问题
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
(Ⅰ)在(a,b)内,g(x)≠0;
(Ⅱ)在(a,b)内至少存在一点ξ,使
。
选项
答案
(Ⅰ)假设对任意的c∈(a,b)且g(c)=0。 由于g(a)=g(c)=g(b)=0,g(x)在[a,c],[c,b]上分别运用罗尔定理可得g’(ξ
1
)=g’(ξ
2
)=0,其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g’(x)在[ξ
1
,ξ
2
]上运用罗尔定理,可得g"(ξ
3
)=0,其中ξ
3
∈(ξ
1
,ξ
2
)。 因已知g"(x)≠0,与题设矛盾,故g(c)≠0,即在(a,b)内,g(x)≠0。 (Ⅱ)构造辅助函数F(x)=f(x)g’(x)—f’(x)g(x),则有F(a)=0,F(b)=0,在[a,b]上满足罗尔定理。 故至少存在一点ξ∈(a,b),使得F’(ξ)=f(ξ)g"(ξ)—f"(ξ)g(ξ)=0,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Vl04777K
0
考研数学一
相关试题推荐
求解二阶微分方程满足初始条件的特解
已知y1=xex+e2x,y2=xex一e-x,y3=xex+e2x+e-x为某二阶线性常系数非齐次微分方程的特解,求此微分方程。
设函数f(x)=x2,x∈[0,π],将f(x)展开为以2π为周期的傅里叶级数,并证明。
设总体X服从自由度为m的χ2分布,其概率密度是f(χ;m).X1,X2,…,Xn是取自X的一个简单随机样本,其样本均值的概率密度记为g(y).(Ⅰ)试将g(y)用X的概率密度表示出来;(Ⅱ)具体计算Y的期望与方差.
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
设A是m×n矩阵,如果齐次方程组Aχ=0的解全是方程b1χ1+b2χ2+…+bnχn=0的解,证明向量β=(b1,b2,…,bn)可由A的行向量线性表出.
设A是m×n矩阵,B是n×s矩阵,秩r(A)=n,证明齐次方程组ABχ=0与Bχ=0同解.
假设随机事件A与B相互独立,P(A)=P()=a-1,P(A∪B)=7/9,求a的值.
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)2的矩阵是_______.
随机试题
经典的肾上腺素传递方式属于
下列哪项不属于中焦病证的临床表现()(2001年第27题)
能与GDP/GTP结合的蛋白质是
正常人体温高热
简述债权人撤销权的成立要件。[简答题,中南大学2019年研;首师大2010年研]
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。‘
微分方程y"一2y’=x2+e2x+1的待定系数法确定的特解形式(不必求出系数)是__________.
Ifyou’vegotanearforlanguages,askillofcodingorasteadyhandanddon’tfaintatthesightofbloodthenyourcareerlo
设待排序的记录为(28,19,11,17,22),经过下列过程将这些记录排序:28,19,11,17,2219,11,17,22,2811,17,19,22,28所用的排序方法是(61)。
Usingtheinformationinthepassage,completethetablebelow.Writeyouranswersinboxes8-10onyouranswersheet.
最新回复
(
0
)