首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设N阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+α2+…+(n—1)αn—1=0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设N阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+α2+…+(n—1)αn—1=0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2016-09-30
56
问题
设N阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α
1
+α
2
+…+(n—1)α
n—1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n一1,又b=α
1
,α
2
,…,α
n
,所以[*]=n—1, 即r(A)=[*]=n一1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n—1)α
n—1
=0,所以α
1
+2α
2
+…+(n—1)α
n—1
+0 α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n一1,0)
T
, 又因为b=α
1
,α
2
,…,α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n一1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/Vou4777K
0
考研数学一
相关试题推荐
[*]
设矩阵,则下列矩阵中与矩阵A等价、合同,但不相似的是().
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
曲线的全部渐近线为__________.
定积分∫01arctan的值等于
求∫arcsinxarccosxdx.
随机试题
下列属于与组员沟通的技巧的是()。
在B-S完全不互溶的多级逆流萃取塔操作中,原用纯溶剂,现改用再生溶剂,其他条件不变,则对萃取操作的影响是()。
参照群体属于影响消费者购买行为的()
斑秃的形成多由于
卫生法基本原则中的国家监督是依据法律法规进行监督管理,通过监督管理( )
质量管理体系的八项原则,包括以顾客为关注点、全员参与原则、基于事实的决策方法、与供方互利的关系,以及()。
施工质量保证体系的运行,应以()为主线,以过程管理为重心,按照PDCA循环的原理展开控制。
企业自用土地使用权转换为采用公允价值模式计量的投资性房地产时形成的资本公积,待该项投资性房地产处置时,应转入()科目。
设X,Y为两个随机变量,且P(X≥0,Y≥0)=,则P{max(X,Y)≥0)=___________.
Email1To:DBLOnlineFrom:MarshaSmithSubject:OrderDearMr.Chapman,Wewouldliketobuy30Futuracomputers,model
最新回复
(
0
)