首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
admin
2020-03-15
49
问题
设α=(1,2,3,4)
T
,β=(3,-2,-1,1)
T
,A=αβ
T
.
(I)求A的特征值、特征向量;
(Ⅱ)问A能否相似于对角矩阵?说明理由.
选项
答案
法一 (I)[*] 故A有特征值λ=0(四重根). 当λ=0时,(λE-A)x=0即Ax=0,其同解方程为3x
1
-2x
2
-x
3
﹢x
4
=0. 解得对应的线性无关的特征向量为 ξ
1
=(2,3,0,0)
T
,ξ
2
=(1,0,3,0)
T
,ξ
3
=(1,0,0,-3)
T
. A的对应于λ=0的全体特征向量为k
1
ξ
1
﹢k
2
ξ
2
﹢k
3
ξ
3
,其中k
1
,k
2
,k
3
为不全为零的任意常数. (Ⅱ)因r(A)=r(αβ
T
)≤r(α)=1(α≠0),A≠O,故r(A)=1. λ=0为四重特征值,线性无关的特征向量只有3个,故A不能相似于对角矩阵. 法二 (I)r(A)=r(αβ
T
)≤r(α)=1.又A≠O,故r(A)=1,|A |=0. 故A有特征值λ=0.对应的特征向量满足(OE-A)x=O,即Ax=αβ
T
=0,其同解方程为 3x
1
-2x
2
-x
3
﹢
4
=0. 故知λ=0至少是A的三重特征值,设第4个特征值为λ
4
. 由[*]=3-4-3﹢4=0,得λ
4
=0,故λ=0是四重特征值.对应特征向量的求法同法一. (Ⅱ)由于λ=0是四重特征值,但对应的线性无关特征向量只有3个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/VpA4777K
0
考研数学二
相关试题推荐
齐次线性方程组的系数矩阵为A,存在B≠O,使得AB=O,则()
已知线性方程组当a,b,c满足什么关系时,方程组只有零解?
[2007年]设函数f(x)在(0,+∞)内具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是().
[2008年]求极限[*]
[2015年]设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,x=所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成的旋转体的体积.若V1=V2,求A的值.
[2011年](I)证明对任意的正整数,都有成立;(Ⅱ)设an=1+一lnn(n=1,2,…),证明数列{an}收敛.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
设A=E一ξξT,ξ是非零列向量,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A不可逆.
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值;
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2。求方程f(x1,x2,x3)=0的解。
随机试题
根据《建设工程施工合同(示范文本)》(GF—99—0201)规定,()应按照合同约定负责施工场地及其周边环境与生态的保护工作。
下列属于财务管理风险对策的有()。
直到完成使命,他才意识到自己得了重病。
______LiuXiangfailedtocompeteinthe2008BeijingOlympicGames,heisstillaherointheeyesofourChinesepeople.
某养鸡场散养的1000只肉仔鸡,30H龄起大批鸡精神委顿,食欲减退,双翅下垂,羽毛逆立,下痢至排大量血便,1周内死亡率在30%以上。病死鸡剖检病变主要发生在()
强心苷的药理作用不包括
2006年9月20日,中国A市甲公司作为买方与作为卖方的位于意大利B市的乙公司在北京签订购买由意大利丙公司生产的钢琴1万架的合同。后来,钢琴按时运抵甲公司,但甲公司验货后发现该批钢琴质量存在严重缺根据上述案情,请回答以下问题:陷,于是甲公司要求乙公司退还相
根据《水利水电工程等级划分及洪水标准》SL252--2000,下列永久建筑物的级别可提高一级的有()。
在数据库中,建立索引的主要作用是
A、No,that’smyaunt’s.B、No,that’smymother.C、Yes,Ilovemymother.A
最新回复
(
0
)