首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
admin
2020-03-15
71
问题
设α=(1,2,3,4)
T
,β=(3,-2,-1,1)
T
,A=αβ
T
.
(I)求A的特征值、特征向量;
(Ⅱ)问A能否相似于对角矩阵?说明理由.
选项
答案
法一 (I)[*] 故A有特征值λ=0(四重根). 当λ=0时,(λE-A)x=0即Ax=0,其同解方程为3x
1
-2x
2
-x
3
﹢x
4
=0. 解得对应的线性无关的特征向量为 ξ
1
=(2,3,0,0)
T
,ξ
2
=(1,0,3,0)
T
,ξ
3
=(1,0,0,-3)
T
. A的对应于λ=0的全体特征向量为k
1
ξ
1
﹢k
2
ξ
2
﹢k
3
ξ
3
,其中k
1
,k
2
,k
3
为不全为零的任意常数. (Ⅱ)因r(A)=r(αβ
T
)≤r(α)=1(α≠0),A≠O,故r(A)=1. λ=0为四重特征值,线性无关的特征向量只有3个,故A不能相似于对角矩阵. 法二 (I)r(A)=r(αβ
T
)≤r(α)=1.又A≠O,故r(A)=1,|A |=0. 故A有特征值λ=0.对应的特征向量满足(OE-A)x=O,即Ax=αβ
T
=0,其同解方程为 3x
1
-2x
2
-x
3
﹢
4
=0. 故知λ=0至少是A的三重特征值,设第4个特征值为λ
4
. 由[*]=3-4-3﹢4=0,得λ
4
=0,故λ=0是四重特征值.对应特征向量的求法同法一. (Ⅱ)由于λ=0是四重特征值,但对应的线性无关特征向量只有3个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/VpA4777K
0
考研数学二
相关试题推荐
二次型f(x1,x2,x3)=(x1+x2)2+(x2—x3)2+(x3+x1)2的秩为________。
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=求αn+1
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。求方程组(1)的基础解系。
[2015年]设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
(1998年)确定常数a,b,c的值,使
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
求微分方程的通解.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+6y32。求常数a,b及所用的正交变换矩阵Q;
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
随机试题
一位病人经测定CO2CPaH,pH↓,[HCO3-]↓,该病人有
下列哪一项符合脓毒血症概念
调整和完善经济政策,重点支持的区域是()。
根据营业税法律制度的规定,下列项目中免征、不征营业税的有()。
下列叙述中,不属于软件需求规格说明书的作用的是
ItisacknowledgedthatthemodernmusicalshowisAmerica’smostoriginalanddynamiccontributiontowardtheater.Inthelast
Whydoesthemanbuyasweaterwhichhedoesn’tlike?
据我所知,这是迄今为止他们能想出的最佳方案。(uptonow)
Chinaliesmainlyinthenortherntemperatezoneundertheinfluenceofmonsoon(季风).FromSeptemberandOctobertoMarchandAp
Themillionsofinternallydisplacedpersonsfacethesamefateasthatofrefugees.Overallsecuritycanbedamagedbyconflic
最新回复
(
0
)