首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
admin
2019-04-05
123
问题
[2010年]记u
n
=∫
0
1
∣1nt∣[ln(1+t)]
n
dt(n=1,2,…),求极限
u
n
.
选项
答案
利用夹逼准则证之. 证一 因∫
0
1
∣lnt∣t
n
dt=一∫
0
1
t
n
lnt=一[*]∫
0
1
lnt dt
n+1
=一[*] 则0<u
n
<∫
0
1
t
n
∣lnt∣dt=[*]由夹逼准则得到 0≤[*]=0, 即[*]u
n
=0. 证二 由(Ⅰ)知,0≤u
n
=I ∣lnt∣[ln(1+t)]
n
dt≤(ln2)
n
I ∣lnt∣dt.而反常积分 I ∣lnt∣dt收敛.事实上,有 ∫
0
1
∣lnt∣dt=一∫
0
1
lnt dt=-tlnt∣
0
1
+∫
0
1
dt=0+1=1. 又∣ln2<1,故[*]ln
n
2=0,由夹逼准则知[*]u
n
=0. 证三 由(I)知,0≤u
n
=∫
0
1
∣lnt∣[ln(1+t)]
n
dt≤∫
0
1
t
n
∣lnt∣dt =一∫
0
1
t
n
lntdt=一∫
0
1
t
n-1
(tlnt)dt. 又[*]tlnt=0,故存在M>0,使0≤t lnt≤M,t∈(0,1).因而 0≤u
n
≤∫
0
1
t
n
∣lnt∣dt=一∫
0
1
t
n-1
(tlnt)dt≤M∫
0
1
t
n-1
dt=[*]→0(n→∞) 由夹逼准则知,[*]u
n
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJV4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1.试证明:(1)存在x1∈[0,1]使得|f(x1)|>4;(2)存在x2∈[0,1]使得|f(x2)|=4.
设A为n阶非零矩阵,且A2=A,r(A)=r.求|5E+A|.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt当x取何值时,F(x)取最小值;
求下列极限:
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
求极限:.
设函数f(x,y)连续,则二次积分等于()
(2004年试题,二)设函数f(x)连续,且f’(0)>0,则存在δ>0,使得().
随机试题
背景某大型高档商住小区项目,共计建筑面积22万m2,地上层数38层,其中地下为设备和停车用房,地上六层为商业建筑,其余为民用住宅。由于本工程位于中心城区,属于该市重点工程,施工单位对安全工作非常重视。施工总承包单位成立了项目部组织施工。施工过程中发生如下
渐霜风凄紧。
下面关于Word标题栏的叙述中,错误的是()
关于HELLP综合征,下列描述错误的是
钩体病早期出现的中毒症侯群有“三症状”,即_______、_______和全身乏力。
患者,女,37岁。月经量多,皮肤散在出血点,血象:血红蛋白120g/L,白细胞8×109/L,中性粒细胞0.7,淋巴细胞0.3,血小板50×109/L,骨髓片巨核细胞增多。应首先考虑的是()
在现代纸币制度下,引起货币失衡的原因主要是()。
【《战国策》】扬州大学2016年中国古代史真题
考虑如下两家公司:公司A从事房地产行业,股票的期望收益率和贝塔值分别为15%和1.1;公司B同时从事制药和融资租赁业务,两种业务的市值分别占B公司总市值的1/3和2/3,公司B的股票期望回报率和贝塔值分别为20%和1.6。假设B公司融资租赁业务的期望收
如果某地公共政策制定是正确的并且执行有力,则不会出现大规模上访。只有相关决策人不关心群众,才会出现大规模上访。某地公共政策制定是正确的,相关决策人也心系群众,深入实际搞调查研究,当地群众对此是满意的。根据以上信息,得不出以下哪项?
最新回复
(
0
)