首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
admin
2019-04-05
122
问题
[2010年]记u
n
=∫
0
1
∣1nt∣[ln(1+t)]
n
dt(n=1,2,…),求极限
u
n
.
选项
答案
利用夹逼准则证之. 证一 因∫
0
1
∣lnt∣t
n
dt=一∫
0
1
t
n
lnt=一[*]∫
0
1
lnt dt
n+1
=一[*] 则0<u
n
<∫
0
1
t
n
∣lnt∣dt=[*]由夹逼准则得到 0≤[*]=0, 即[*]u
n
=0. 证二 由(Ⅰ)知,0≤u
n
=I ∣lnt∣[ln(1+t)]
n
dt≤(ln2)
n
I ∣lnt∣dt.而反常积分 I ∣lnt∣dt收敛.事实上,有 ∫
0
1
∣lnt∣dt=一∫
0
1
lnt dt=-tlnt∣
0
1
+∫
0
1
dt=0+1=1. 又∣ln2<1,故[*]ln
n
2=0,由夹逼准则知[*]u
n
=0. 证三 由(I)知,0≤u
n
=∫
0
1
∣lnt∣[ln(1+t)]
n
dt≤∫
0
1
t
n
∣lnt∣dt =一∫
0
1
t
n
lntdt=一∫
0
1
t
n-1
(tlnt)dt. 又[*]tlnt=0,故存在M>0,使0≤t lnt≤M,t∈(0,1).因而 0≤u
n
≤∫
0
1
t
n
∣lnt∣dt=一∫
0
1
t
n-1
(tlnt)dt≤M∫
0
1
t
n-1
dt=[*]→0(n→∞) 由夹逼准则知,[*]u
n
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJV4777K
0
考研数学二
相关试题推荐
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=arctaneχ-;(Ⅲ)设y=(χ-1),求y′,与y′(1).
求微分方程y"+2y’-3y=e-3x的通解.
求二重积分,其中D={(x,y)|(x一1)2+(y—1)2≤2,y≥x}.
已知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1,α2,α3,α4,α5均为四维列向量,α1,α2,α4线性无关,又设α3=α1一α4,α5=α1+α2+α4,β=2α1+α2一α3+α4+α5,求Ax=β的通解。
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt当x取何值时,F(x)取最小值;
设f(χ)=∫0tanχarctant2dt,g(χ)=χ-sinχ,当χ→0时,比较这两个无穷小的关系.
求极限
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则
[2005年]设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是().
[2008年]计算∫01dx.
随机试题
Iunderstandthetwofactorsthatcontributedtomydownfall:______(缺乏职业目标和缺乏自信).
在财产保险合同有效期内,保险标的的危险程度显著增加的,被保险人应当按照合同约定及时通知()。
根据《碾压式土石坝施工技术规范》DL/T5129--2001,筑坝材料施工试验项目包括()。
背景A公司参与远离所在地炼钢厂的机电安装工程总承包的投标,投标前做了如下工作:(1)分析了招标文件工程范围,本工程含机械设备安装、电气及自动化系统安装、钢结构及非标准件制作安装、工业给水排水施工、防腐及保温工程、筑炉工程。并分析了本公司
某公司上年年末支付每股股息2元,预期回报率为15%,未来3年中超常态增长率为20%,随后的增长率为8%,则股票的价值为()。
下列组织结构类型中,由专门从事某项工作的项目小组发展而来的是()。
下列关于股份支付的会计处理中,正确的有()。
甲公司为增值税一般纳税人,于2015年12月5日以一批商品换入乙公司的一项非专利技术,该交换具有商业实质。甲公司换出商品的账面价值为80万元,不含增值税的公允价值为100万元,增值税额为17万元;另收到乙公司补价10万元。甲公司换入非专利技术的原账面价值为
阅读“青藏地区”教学片断,回答问题。教师提出一个问题:“青藏地区”是什么样的?【活动1】在青藏地区示意图上填注以下地理事物(1)填注主要经线、纬线的度数。(2)填注喜马拉雅山脉、昆仑山脉、祁连山脉、横断山脉、塔里木河、金沙江、塔里木盆地。【活动2
现在公务员面临的工作情况复杂多变,需要我们具备理性的判断及处理能力,请你结合自身经历,列举一件你遇到过的危急事情,并说明你是如何处理的。
最新回复
(
0
)