首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
admin
2019-04-05
117
问题
[2010年]记u
n
=∫
0
1
∣1nt∣[ln(1+t)]
n
dt(n=1,2,…),求极限
u
n
.
选项
答案
利用夹逼准则证之. 证一 因∫
0
1
∣lnt∣t
n
dt=一∫
0
1
t
n
lnt=一[*]∫
0
1
lnt dt
n+1
=一[*] 则0<u
n
<∫
0
1
t
n
∣lnt∣dt=[*]由夹逼准则得到 0≤[*]=0, 即[*]u
n
=0. 证二 由(Ⅰ)知,0≤u
n
=I ∣lnt∣[ln(1+t)]
n
dt≤(ln2)
n
I ∣lnt∣dt.而反常积分 I ∣lnt∣dt收敛.事实上,有 ∫
0
1
∣lnt∣dt=一∫
0
1
lnt dt=-tlnt∣
0
1
+∫
0
1
dt=0+1=1. 又∣ln2<1,故[*]ln
n
2=0,由夹逼准则知[*]u
n
=0. 证三 由(I)知,0≤u
n
=∫
0
1
∣lnt∣[ln(1+t)]
n
dt≤∫
0
1
t
n
∣lnt∣dt =一∫
0
1
t
n
lntdt=一∫
0
1
t
n-1
(tlnt)dt. 又[*]tlnt=0,故存在M>0,使0≤t lnt≤M,t∈(0,1).因而 0≤u
n
≤∫
0
1
t
n
∣lnt∣dt=一∫
0
1
t
n-1
(tlnt)dt≤M∫
0
1
t
n-1
dt=[*]→0(n→∞) 由夹逼准则知,[*]u
n
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJV4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X)(1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|(fx)-f(y)|≤|x-y|.证明:|∫abf(x)dx-(b-a)f(a)|≤(b-a)2
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
求二重积分,其中D={(x,y)|(x一1)2+(y—1)2≤2,y≥x}.
利用夹逼准则证明:
求极限:.
积分=()
(2004年试题,三(2))设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=-x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0)上的表达式;(Ⅱ)问k为何值时f(x)在x=0处可
[2009年]求极限
随机试题
简述本质和现象的辩证关系。
该患者首选的影像学检查是如果查体时发现肝肿大,质硬,表面不光滑。最可能的诊断是
标准正态分布曲线下90%所对应的横轴尺度u的范围是
一般公共建筑在人流组织上,可归纳为()等方式
根据财政部办公厅财办建[2002]619号文件《财政投资项目评审操作规程(试行)》的规定,在进行概算评审时,应对招投标文件、过程和相关合同的合法性进行评审并据此核定项目概算的对象是()。
论述中学生品德发展的主要特征。
结合实际阐述教师应如何培养小学儿童的迁移能力?
态度与品德形成过程经历的第二阶段是()
汉武帝死后,()辅佐汉昭帝,继续实行汉武帝晚年的政策,西汉统治相对稳定。
Thepassingtravellersaid,"Whateveryouplease."itmeant(意指,意味着)Thecat______whenithaseatenallthemiceandrats.
最新回复
(
0
)