首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
admin
2019-04-05
175
问题
[2010年]记u
n
=∫
0
1
∣1nt∣[ln(1+t)]
n
dt(n=1,2,…),求极限
u
n
.
选项
答案
利用夹逼准则证之. 证一 因∫
0
1
∣lnt∣t
n
dt=一∫
0
1
t
n
lnt=一[*]∫
0
1
lnt dt
n+1
=一[*] 则0<u
n
<∫
0
1
t
n
∣lnt∣dt=[*]由夹逼准则得到 0≤[*]=0, 即[*]u
n
=0. 证二 由(Ⅰ)知,0≤u
n
=I ∣lnt∣[ln(1+t)]
n
dt≤(ln2)
n
I ∣lnt∣dt.而反常积分 I ∣lnt∣dt收敛.事实上,有 ∫
0
1
∣lnt∣dt=一∫
0
1
lnt dt=-tlnt∣
0
1
+∫
0
1
dt=0+1=1. 又∣ln2<1,故[*]ln
n
2=0,由夹逼准则知[*]u
n
=0. 证三 由(I)知,0≤u
n
=∫
0
1
∣lnt∣[ln(1+t)]
n
dt≤∫
0
1
t
n
∣lnt∣dt =一∫
0
1
t
n
lntdt=一∫
0
1
t
n-1
(tlnt)dt. 又[*]tlnt=0,故存在M>0,使0≤t lnt≤M,t∈(0,1).因而 0≤u
n
≤∫
0
1
t
n
∣lnt∣dt=一∫
0
1
t
n-1
(tlnt)dt≤M∫
0
1
t
n-1
dt=[*]→0(n→∞) 由夹逼准则知,[*]u
n
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJV4777K
0
考研数学二
相关试题推荐
设A,B是n阶方阵,B及E+AB可逆,证明:E+BA也可逆,并求(E+BA)-1.
判别积分∫0+∞的敛散性.
设试判别函数在原点(0,0)处,是否可偏导?偏导数是否连续?是否可微?
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
已知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1,α2,α3,α4,α5均为四维列向量,α1,α2,α4线性无关,又设α3=α1一α4,α5=α1+α2+α4,β=2α1+α2一α3+α4+α5,求Ax=β的通解。
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时α1+α2,α2+α3,…,αn+α1线性无关.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
[2009年]设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
(2009年试题,18)设非负数函数y=y(x)(x≥0)满足微分方程xy’’一y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
随机试题
Wherearethespeakersgoingtostay?
原发性肝细胞性肝癌最理想的肿瘤标记物足
碧海实业有限公司等3家国有企业,拟设立一家以高新技术产业为主的新奇股份有限公司。新奇公司拟筹集股本总额4亿元,其中,发起人碧海公司拟以厂房、设备、专利技术、土地使用权和部分现金作出资,并将成为新奇公司第一大股东。3家发起人为筹办新奇股份公司,共同制订了公司
对高层建筑消防给水系统称谓正确的是()
模板设计中,属于特殊荷载的是()。
修改工资表名称。将“全员工资表”的工资表名称修改为“T公司工资表”。
简述不良品德矫正的心理政策。
下列对江西省名胜古迹描述属实的是()。
中国公民A是一个文艺团体演员,其2010年6月收入情况如下:(1)月工薪收入6000元,第二季度的奖金4000元;(2)自编剧本取得某文工团给予的剧本使用费20000元;(3)每周参加赴郊县乡村文艺演出一次,每一次收入3
WatchingMoviesinEnglishI.OnegreatadvantageofEnglishlearners:Beingabletowatch【T1】______inEnglish【T1】______since
最新回复
(
0
)