首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
admin
2019-04-05
106
问题
[2010年]记u
n
=∫
0
1
∣1nt∣[ln(1+t)]
n
dt(n=1,2,…),求极限
u
n
.
选项
答案
利用夹逼准则证之. 证一 因∫
0
1
∣lnt∣t
n
dt=一∫
0
1
t
n
lnt=一[*]∫
0
1
lnt dt
n+1
=一[*] 则0<u
n
<∫
0
1
t
n
∣lnt∣dt=[*]由夹逼准则得到 0≤[*]=0, 即[*]u
n
=0. 证二 由(Ⅰ)知,0≤u
n
=I ∣lnt∣[ln(1+t)]
n
dt≤(ln2)
n
I ∣lnt∣dt.而反常积分 I ∣lnt∣dt收敛.事实上,有 ∫
0
1
∣lnt∣dt=一∫
0
1
lnt dt=-tlnt∣
0
1
+∫
0
1
dt=0+1=1. 又∣ln2<1,故[*]ln
n
2=0,由夹逼准则知[*]u
n
=0. 证三 由(I)知,0≤u
n
=∫
0
1
∣lnt∣[ln(1+t)]
n
dt≤∫
0
1
t
n
∣lnt∣dt =一∫
0
1
t
n
lntdt=一∫
0
1
t
n-1
(tlnt)dt. 又[*]tlnt=0,故存在M>0,使0≤t lnt≤M,t∈(0,1).因而 0≤u
n
≤∫
0
1
t
n
∣lnt∣dt=一∫
0
1
t
n-1
(tlnt)dt≤M∫
0
1
t
n-1
dt=[*]→0(n→∞) 由夹逼准则知,[*]u
n
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/mJV4777K
0
考研数学二
相关试题推荐
设函数f(u)有连续的一阶导数,f(2)=1,且函数z=满足,x>0,y>0,①求z的表达式.
[*]
计算下列反常积分:(1)∫-∞+∞(|x|+x)e-|x|dx;
已知ξ=[1,1,一1]T是矩阵A=的一个特征向量.(1)确定参数a,b及ξ对应的特征值λ;(2)A是否相似于对角阵,说明理由.
求二重积分,其中D={(x,y)|(x一1)2+(y—1)2≤2,y≥x}.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt当F(x)的最小值为f(A)一a2一1时,求函数f(x)。
已知f(x,y)=,设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).③设A和B是两个
设a>1,n为正整数,证明:
极坐标下的累次积分dθ∫02cosθf(rcosθ,rsinθ)rdr等于().
随机试题
不能非特异多克隆刺激T细胞增殖的物质是
下列关于网络计划的工期优化的表述中,不正确的是()。
实施电子转单后,依据《口岸查验管理规定》相关规定,检验检疫机构( )。
Ithinkuniformsaredemeaningtothehumanspiritandtotallyunnecessaryinademocraticsociety.Uniformstelltheworldthat
消灭剥削和两极分化,最终实现共同富裕
Parenthoodisn’tacareer-killer.Infact,economistswithtwoormorekidstendtoproducemoreresearch,notless,thantheir
阅读下列说明,回答问题1至问题2。[说明]某公司要为其制作的多媒体演示系统采集音频素材,并且在计算机内对音频信息进行编辑。
Nothingis________time;yetnothingislessvalued.
Everyprofessionortrade,everyart,andeverysciencehasitstechnicalvocabulary.Differentoccupations,however,differwid
Thecurrentpoliticaldebateoverfamilyvalues,personalresponsibility,andwelfaretakesforgrantedtheentrenchedAmerican
最新回复
(
0
)