首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续,以T为周期,试证明: (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期为T∫0Tf(x)dx
设f(x)在(-∞,+∞)内连续,以T为周期,试证明: (1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数); (2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0; (3)∫f(x)dx(即f(x)的全体原函数)周期为T∫0Tf(x)dx
admin
2018-09-25
57
问题
设f(x)在(-∞,+∞)内连续,以T为周期,试证明:
(1)∫
a
a+T
f(x)dx=∫
0
T
f(x)dx(a为任意实数);
(2)∫
0
x
f(t)dt以T为周期<=>∫
0
T
f(x)dx=0;
(3)∫f(x)dx(即f(x)的全体原函数)周期为T<=>∫
0
T
f(x)dx=0.
选项
答案
(1) ∫
a
a+T
f(x)d=∫
a
0
f(x)dx+∫
0
T
f(x)dx+∫
T
T+a
f(x)dx, 其中∫
T
T+a
f(x)dx=∫
T
T+a
f(x-T)dx[*]∫
0
a
f(s)ds=∫
0
a
f(x)dx. 代入上式得∫
a
a+T
f(x)=∫
a
0
f(x)dx+∫
0
T
f(x)dx+∫
0
a
f(x)dx=∫
0
T
f(x)dx. (2)∫
0
x
f(t)dt以T为周期<=>∫
0
x+T
f(t)dt-∫
0
x
f(t)dt=∫
x
x+T
f(t)dt[*]∫
0
T
f(t)dt=0. (3)只需注意∫f(x)dx=∫
0
x
f(t)dt+C,∫
0
x
f(t)dt是f(x)的一个原函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Vqg4777K
0
考研数学一
相关试题推荐
设随机变量X服从正态分布N(μ,1),已知P{X≤3}=0.975,则P{X≤-0.92}=__________.
求下列函数在指定点处的二阶偏导数:
设X服从[a,b]上的均匀分布,X1,…,Xn为简单随机样本,求a,b的最大似然估计量.
接连不断地、独立地对同一目标射击,直到命中为止,假定共进行n(n≥1)轮这样的射击,各轮射击次数相应为k1,k2,…,kn,试求命中率p的最大似然估计值和矩估计值.
设A是n阶矩阵,若A2=A,证明A+E可逆.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
计算不定积分dx.
求下列不定积分:(Ⅰ)dx;(Ⅱ)(a>0);(Ⅲ)∫x(1-dx.
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。(Ⅰ)求曲面∑的方程;(Ⅱ)求Ω的形心坐标。
已知,则u=2a一3b的模|u|=_________.
随机试题
具有有开窍醒神,辟秽止痛之效的药物是
某男,63岁,2小时前活动中出现心胸疼痛,胸部闷窒,伴心悸、喘促、汗出,经含化复方丹参滴丸等药治疗无效。现病人仍心前区疼痛、胸中闷窒、动则加重,心中恐惧,出汗,舌体胖大,舌质黯淡,苔白,脉细无力。
如图所示的职能组织结构中,m、f1、f2、f3、g1、g2等分别代表不同的工作部门或主管人员。这个组织结构表明()。
注册商标有效期满需要续展的,应当在()申请续展注册。
根据《会计法》规定,下列情形中,会计证的发证机关不予办理年检的是()。
证券投资基金体现当事人之间的()。
简述促进知识概括的主要方法。
某招聘会在入场前若干分钟就开始排队,每分钟来的求职人数一样多,从开始入场到等候入场的队伍消失,同时开4个人口需30分钟,同时开5个人口需20分钟。如果同时打开6个人口,需多少分钟?
某人想用20块长2米、宽1.2米的金属网建一个靠墙的长方形鸡窝。为防止鸡飞出去,鸡窝的高度不得低于2米,要使所建的鸡窝面积最大,长度需要多少米?
营养不良性口角炎(angularcheilitis)
最新回复
(
0
)