首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
设A为n阶矩阵,α1为AX=0的一个非零解,向量组α2,α2,…,αs满足Ai-1αi=α1(i=2,3,…,s).证明α1,α2,…,αs线性无关.
admin
2018-11-20
49
问题
设A为n阶矩阵,α
1
为AX=0的一个非零解,向量组α
2
,α
2
,…,α
s
满足A
i-1
α
i
=α
1
(i=2,3,…,s).证明α
1
,α
2
,…,α
s
线性无关.
选项
答案
设c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0(1),要推出系数c
i
都为0. 条件说明A
i
α
i
=Aα
1
=0(i=1,2,3,…,s). 用A
s-1
乘(1)的两边,得c
s
α
1
=O,则c
s
=0. 再用A
s-2
乘(1)的两边,得c
s-1
α
1
=0,则c
s-1
=0.这样可逐个得到每个系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/VuW4777K
0
考研数学三
相关试题推荐
f(x)=则f(x)在x=0处().
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’一(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
设矩阵A满足(2E一C一1B)AT=C一1,且求矩阵A.
已知函数在(一∞,+∞)内连续可导,则().
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中(1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求A*β.
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
随机试题
A.尿道球部B.尿道膜部C.尿道舟状窝D.尿道海绵体部E.尿道前列腺部男性尿道的第二个狭窄部位在
领导者的作用不包括()
自身免疫性胃炎病人_______分泌减少乃至缺失,还可影响维生素B12吸收,导致_______。
股肿中后期可选用何种外治法
如图2一13所示,用波长为λ的单色光垂直照射到空气劈尖上,从反射光中观察干涉条纹,距顶点为L处是暗条纹,使劈尖角θ连续变大,直到该点处再次出现暗条纹为止,劈尖角的改变量△θ是()。
甲企业是一家煤化工企业,在生产过程中会产生CO、H2S等多种有害气体,同时伴有高温高压,还可能存在火灾爆炸等危险。甲企业从预防伤害事故就是防止能量或者危险物质的释放角度出发,利用各种屏蔽来防止意外的能量转移,从而防止事故的发生。甲企业的做法符合(
2012年建材工业增加值同比增长11.5%,增速回落8个百分点,占全国工业增加值的6.6%。全年水泥产量21.8亿吨、同比增长7.4%,陶瓷砖92亿平方米、同比增长9.4%,天然花岗岩石材4.1亿平方米,同比增长27.2%。平板玻璃7.1亿重量箱、同比下降
Peoplehavebeenholdingheateddiscussionsrecentlyaboutwomen’sexperienceintheworkplace.LastmonthSherylSandberg,chie
结构化程序设计的基本原则不包括
Inasense,thenewprotectionismisnotprotectionismatall,atleastnotinthe【C1】______senseoftheterm.Theoldprotectio
最新回复
(
0
)