首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bx=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T.若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bx=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T.若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
admin
2019-08-27
84
问题
设齐次线性方程组Ax=0的基础解系为α
1
=(1,3,0,2)
T
,α
2
=(1,2,-1,3)
T
.Bx=0的基础解系为β
1
=(1,1,2,1)
T
,β
2
=(0,-3,1,a)
T
.若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
选项
答案
设非零公共解为γ,则γ既可由α
1
和α
2
线性表示,也可由β
1
和β
2
线性表示. 设γ=x
1
α
1
+x
2
α
2
=-x
3
β
1
-x
4
β
2
,则x
1
α
1
+x
2
α
2
+x
3
β
1
+x
4
β
2
=0. [*] y≠0→x
1
,x
2
,
3
,x
4
不全为零→R(α
1
,α
2
,β
1
,β
2
)<4→a=0. 当a=0时, [*] 解得[*]令x
4
=t,则x
1
=2t,x
2
=-t,x
3
=-t,x
4
=t 所以非零公共解为2tα
1
-tα
2
=t(1,4,1,1)
T
,t为非零常数. 【错例分析】本题主要错误在于设出公共解,却未能转化为齐次线性方程组的求解.
解析
【思路探索】设出公共解,进而转化为线性方程组的解.
转载请注明原文地址:https://kaotiyun.com/show/W2A4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,将A的行及列分块,记成对A作若干次初等行变换后,记成则下列结论中错误的是()
两个相同直径为2R>0的圆柱体,它们的中心轴垂直相交,则此两圆柱体公共部分的体积为()(所画出的图形的体积是要求的,如图)
设齐次线性方程组Ax=0为(I)求方程组(*)的基础解系和通解;(Ⅱ)问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
设函数y(x)在区间[1,﹢∞)上具有一阶连续导数,且满足.求y(x).
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3.(I)问ξ1﹢ξ2是否是A的特征向量?说明理由;(Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由;(Ⅲ)证明任意3维非零向量β都是A2的特征向
设y=y(x)由x2y2+y=1(y>0)确定,求函数y=y(x)的极值.
求极限
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
设φ(χ)连续,且φ(χ)+∫0χ(χ-u)φ(u)du=eχ+2χ∫01φ(χu)du试求φ(χ)=________.
设f(χ,y)在单位圆χ2+y2≤1上有连续的偏导数,且在边界上取值为零,f(0,0)=2004,试求极限=_______.
随机试题
汇编权
基准轴和基准面根据与对象的关联性可分为_______和______。
聚证属寒湿中阻,气机壅滞者,宜选用
我国规定,不得参与放射工作的年龄限制为
在货物综合评估法评标因素的技术因素中,货物的()应作为评标的重要技术因素,评标中通常需要按照这些指标对货物设计寿命内运行成本的影响进行量化评价。
下列表述中,符合国务院财政部门预算管理职权规定的是()。
WHO推荐选用皮褶厚度的测量点不包括()。
简述喜歌剧。
某县酒店承包人章某(男,1964年12月生),因经营不善而严重亏损,遂产生了绑架勒索财物的主意。经考察,章某选定了本县个体户吴甲之子吴乙(7岁)为绑架对象,并对吴乙的活动规律进行了跟踪了解。2003年9月14日上午,章某对本酒店的服务员王某(女,1985年
求函数的单调区间与极值点,凹凸区间与拐点及渐近线.
最新回复
(
0
)