首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bx=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T.若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2)T,α2=(1,2,-1,3)T.Bx=0的基础解系为β1=(1,1,2,1)T,β2=(0,-3,1,a)T.若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
admin
2019-08-27
72
问题
设齐次线性方程组Ax=0的基础解系为α
1
=(1,3,0,2)
T
,α
2
=(1,2,-1,3)
T
.Bx=0的基础解系为β
1
=(1,1,2,1)
T
,β
2
=(0,-3,1,a)
T
.若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
选项
答案
设非零公共解为γ,则γ既可由α
1
和α
2
线性表示,也可由β
1
和β
2
线性表示. 设γ=x
1
α
1
+x
2
α
2
=-x
3
β
1
-x
4
β
2
,则x
1
α
1
+x
2
α
2
+x
3
β
1
+x
4
β
2
=0. [*] y≠0→x
1
,x
2
,
3
,x
4
不全为零→R(α
1
,α
2
,β
1
,β
2
)<4→a=0. 当a=0时, [*] 解得[*]令x
4
=t,则x
1
=2t,x
2
=-t,x
3
=-t,x
4
=t 所以非零公共解为2tα
1
-tα
2
=t(1,4,1,1)
T
,t为非零常数. 【错例分析】本题主要错误在于设出公共解,却未能转化为齐次线性方程组的求解.
解析
【思路探索】设出公共解,进而转化为线性方程组的解.
转载请注明原文地址:https://kaotiyun.com/show/W2A4777K
0
考研数学二
相关试题推荐
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设常数a>0,由方程组确定的满足y(a)=a,z(a)=a的函数组为y=y(x),z=z(x),则y’(a)=_______,z’(a)=_______.
(I)设A是n阶方阵,满足A2=A,证明A相似于对角矩阵;(Ⅱ)设A=,求可逆矩阵P使得P-1AP=A,其中A是对角矩阵.
讨论a,b为何值时,方程组无解、有唯一解、有无穷多解.有解时,求其解.
求.要求写出详细的推导过程.
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的()
设平面区域D是由参数方程0≤t≤2π给出的曲线与x轴围成的区域,求二重积分,其中常数a>0.
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y1(x),y2(x),y3(x)是y”﹢p(x)y’﹢q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程的通解是()
求二元函数z=f(x,y)=x2+4y2+9在区域D={(x,y)|x2+y2≤4)上的最大值与最小值.
在区间[-1,1]上的最大值为_______.
随机试题
中国封建中央集权专制体制的矛盾主要包括()
A.下颌骨体有大小不等的多房阴影B.下颌骨内有单房透明阴影,四周有白色骨质线C.颌骨内虫蚀状骨质破坏区,四周骨质可有破坏D.下颌角见骨质疏松脱钙,并有骨质增生E.下颌骨体有骨质破坏,并有死骨形成
下列药物中不含升丹的是
背景材料:某跨海大桥,上部结构为9m×50m+9m×50m+12m×50m三联等跨等截面预应力混凝土连续箱梁桥,横向为两个独立的单箱,梁高2.75m,单箱顶面宽为11.30m。箱梁采用移动式模架逐跨施工,整套设备从瑞士某公司引进。施工单位在施工组织设计中
M有限责任公司(以下简称M公司)以人民币作为记账本位币,外币业务采用交易发生日的即期汇率折算,按季计算外币账户的汇兑差额。 (1)M公司2012年第四季度发生以下交易或事项: ①10月8日,收到国外N公司追加的外币资本投资1000万美元,款项于当日
属于听证范围的案件,税务机关应在当事人提出听证要求的()日之内举行听证,并在举行听证的()日前将《税务行政处罚听证通知书》送达当事人。
俄罗斯著名小说《战争与和平》和《安娜·卡列尼娜》的作者是()。
物品运输合理化的重要意义主要体现()。
[*]
PC机中,I/O端口常用的地址范围是( )。
最新回复
(
0
)