首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. 求矩阵A的全部特征值;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且 Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3. 求矩阵A的全部特征值;
admin
2018-05-21
54
问题
设A为三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三维线性无关的列向量,且
Aξ
1
=-ξ
1
+2ξ
2
+2ξ
3
,Aξ
2
=2ξ
1
-ξ
2
-2ξ
3
,Aξ
3
=2ξ
1
-2ξ
2
-ξ
3
.
求矩阵A的全部特征值;
选项
答案
A(ξ
1
,ξ
2
,ξ
3
) [*] 因为ξ
1
,ξ
2
,ξ
3
线性无关,所以(ξ
1
,ξ
2
,ξ
3
)可逆,故 [*] 由|λE-A|=|λE-B|=(λ+5)(λ-1)
2
=0,得A的特征值为-5,1,1.
解析
转载请注明原文地址:https://kaotiyun.com/show/WKr4777K
0
考研数学一
相关试题推荐
证明:(1)对任意正整数n,都有成立;(2)设an=1+—lnn(n=1,2,…),证明{an}收敛.
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0.试证明至少存在一点ξ∈(a,b),使
若α,β,γ是单位向量且满足α+β+γ=0,则以α,β为边的平行四边形的面积S=_________.
设L是圆周x2+y2=1,n为L的外法线向量,u(x,y)=等于()
设可微函数f(x,y,z)在点(x0,y0,z0)处的梯度向量为g,l=(0,2,2)为一常向量,且g.l=1,则函数f(x,y,z)在点(x0,y0,z0)处沿l方向的方向导数等于()
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设α,β均为n维非零列向量,且αtβ≠o.设矩阵A=αβT一E,且满足方程A2一3A=4E,则αT2=________.
已知线性方程组(Ⅰ)及线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
随机试题
A.snoRNAB.snRNAC.rRNAD.tRNA参与hnRNA剪切的核酸是
关于热原性质的叙述,不正确的是
关于梨状肌综合征的描述哪项不对
门静脉高压症的手术指征
关于世界贸易组织争端解决机制中的专家小组程序,下列说法中正确的有哪几项?()
()可根据预测周期、预测对象、数据资料、精度需求、时间与费用限制等因素,选择适当的方法。
甲市某电台为在乙市从事拍摄工作而设立了临时机构,并在乙市某银行开立了银行账户,则该银行账户属于()。
国家股是指有权代表国家的投资部门或机构以国有资产向公司投资形成的股份,()资产应该折算成国家股。
甲潜入乙的住宅盗窃,将乙的皮箱(内有现金3万元)扔到院墙外,准备一会儿翻墙出去再捡。偶尔经过此处的丙发现皮箱无人看管,遂将其拿走,据为己有。15分钟后,甲来到院墙外,发现皮箱已无踪影。对于甲、丙行为的定性,下列选项正确的是()。
TheEnglish【B1】______settlementsinNorthAmericabeganinthe17thcenturywhenWesternEuropewas【B2】______greatchanges
最新回复
(
0
)