首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续 ②f(x,y)在点(x0,y0)处的两个偏导数连续 ③f(x,y)在点(x0,y0)处可微 ④f(x,y)在点(x0,y0)处的两个偏导数存在 若用“PQ”表示可由
考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续 ②f(x,y)在点(x0,y0)处的两个偏导数连续 ③f(x,y)在点(x0,y0)处可微 ④f(x,y)在点(x0,y0)处的两个偏导数存在 若用“PQ”表示可由
admin
2019-08-12
66
问题
考虑二元函数f(x,y)的下面4条性质:
①f(x,y)在点(x
0
,y
0
)处连续 ②f(x,y)在点(x
0
,y
0
)处的两个偏导数连续
③f(x,y)在点(x
0
,y
0
)处可微 ④f(x,y)在点(x
0
,y
0
)处的两个偏导数存在
若用“P
Q”表示可由性质P推出性质Q,则有 ( )
选项
A、②→③→①
B、③→②→①
C、③→④→①
D、③→①→④
答案
A
解析
本题考查图1.4—1中因果关系的认知:
转载请注明原文地址:https://kaotiyun.com/show/WSN4777K
0
考研数学二
相关试题推荐
(18)已知a是常数,且矩阵A=可经初等列变换化为矩阵B=(1)求a;(2)求满足AP=B的可逆矩阵P.
设实对称矩阵A满足A2-3A+2E=O,证明:A为正定矩阵.
已知二次型f(x1,x2,x3)=x12-2x22+bx32-4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32.求a、b的值和正交矩阵P.
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的曲线积分∫L(1+y3)dx+(2x+y)dy的值最小.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y".
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
若由曲线,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
设函数y=y(χ)由e2χ+y-cosχy=e-1确定,则曲线y=y(χ)在χ=0对应点处的法线方程为_______.
随机试题
Inatelephonesurveyofmorethan2000adults,21%saidtheybelievedthesunrevolved(旋转)aroundtheearth.An【C1】______21%di
根据我国法律规定,关于高度危险作业民事责任免除的表述不正确的是()。
根据我国的献血法,有关医疗机构采血说法正确的是()
由出资者个人承担无限责任的房地产经纪机构是()。
协调相关者的利益冲突,要把握的原则是尽可能使企业相关者的利益分配在金额上达到协调平衡。()
(2009年考试真题)甲公司2008年1月5日支付价款2000万元购入乙公司30%的股份,准备长期持有,另支付相关税费20万元,购入时乙公司可辨认净资产公允价值为12000万元。甲公司取得投资后对乙公司具有重大影响。假定不考虑其他因素,甲公司因确认投资而影
甲乙两个工程队共有100人,如果抽调甲队人数的1/4至乙队,则乙队人数比甲队多2/9,问甲队原有()
母亲要求儿子从小就努力学外语。儿子说:“我长大又不想当翻译,何必学外语。”以下哪项是儿子的回答中包含的前提?
证明:
A、 B、 C、 A图片A是咖啡,图片B是可乐,图片C是可口可乐。故本题答案为A。
最新回复
(
0
)