首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=( )。
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=( )。
admin
2015-11-16
76
问题
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B
*
是B的伴随矩阵,若A的列向量线性无关,则秩r(B
*
)=( )。
选项
A、0
B、1
C、3
D、4
答案
D
解析
解一 由2AB=A得A(2B-E)=0,从而
r(A)+(2B-E)≤4,
又因A是5×4矩阵,A的列向量线性无关,由此知秩r(A)=4,从而秩r(2B-E)=0,即2B-E=0。
于是B=
E,r(B)=r(
E)=r(E)=4,故r(B
*
)=4,仅(D)入选。
解二 因A为列满秩,故秩(A)=4,则由2AB=A得到r(2AB)=r(A)=4,而
r(2AB)=r(AB)=r(B),
故 r(B)=r(2AB)=r(A)=4。
于是秩(B
*
)=4,仅(D)入选。
转载请注明原文地址:https://kaotiyun.com/show/WTw4777K
0
考研数学一
相关试题推荐
细菌的增长率与总数成正比,如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数。
设变换可把方程=0简化为=0,求常数a.
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
确定常数a和b,使得函数处处可导.
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.求SD1+D2.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性;(Ⅲ
参数a取何值时,线性方程组有无数个解?求其通解.
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22若提供的广告费用为1.5万元
曲线共有渐近线()
随机试题
在无节奏流水施工中,通常用来计算流水步距的方法是()。
论述我国企业国际化经营的动因。
乳腺癌最易发生于乳腺的
建筑物的哪种采暖系统高度超过50m时宜竖向分区设置?(2003,74)
同业拆借是银行为获得长期稳定的资金相互之间进行的资金借贷。()
天安门前的五座金水桥中,刻有莲花图案的桥称品级桥,供三品以上官员通行。()
12,-4,8,-32,-24,768,()
《最高人民法院关于贯彻执行若干问题的意见(试行)》第184条规定:外国法人以其注册登记地国家的法律为其本国法,法人的民事行为能力依其本国法确定。外国法人在我国领域内进行的民事活动,必须符合我国的法律规定。该条规定所体现的是哪一个原则?()
简述媒介霸权主义。(复旦大学,2012年)
A、Lackofidentity.B、Inabilitytomimic.C、Lackofinterest.D、Inabilitytowritemusic.A在谈到歌剧的时候,女士坦言她不喜欢歌剧这种无法再创新的东西,这让她在演唱时
最新回复
(
0
)