首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=( )。
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B*是B的伴随矩阵,若A的列向量线性无关,则秩r(B*)=( )。
admin
2015-11-16
55
问题
设A是5×4矩阵,B是四阶矩阵,满足2AB=A,B
*
是B的伴随矩阵,若A的列向量线性无关,则秩r(B
*
)=( )。
选项
A、0
B、1
C、3
D、4
答案
D
解析
解一 由2AB=A得A(2B-E)=0,从而
r(A)+(2B-E)≤4,
又因A是5×4矩阵,A的列向量线性无关,由此知秩r(A)=4,从而秩r(2B-E)=0,即2B-E=0。
于是B=
E,r(B)=r(
E)=r(E)=4,故r(B
*
)=4,仅(D)入选。
解二 因A为列满秩,故秩(A)=4,则由2AB=A得到r(2AB)=r(A)=4,而
r(2AB)=r(AB)=r(B),
故 r(B)=r(2AB)=r(A)=4。
于是秩(B
*
)=4,仅(D)入选。
转载请注明原文地址:https://kaotiyun.com/show/WTw4777K
0
考研数学一
相关试题推荐
设z=f(eχsiny,χy),其中f二阶连续可偏导,求
设矩阵X=(χij)3×3为未知矩阵,问a、b、c各取何值时,矩阵方程Aχ=B有解?并在有解时,求出其全部解.
用导数定义证明:可导的偶函数的导函数是奇函数,而可导的奇函数的导函数是偶函数.
设当x→0时,ln(1+x)一(ax2+bx)是比xarcsinx高阶的无穷小量,试求常数a和b.
设函数证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设A=,且存在非零向量α,使得Aα=2α.求常数a.
设A,B为n阶矩阵,则下列结论正确的是().
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
曲线共有渐近线()
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
随机试题
钎焊前焊件表面准备工作没有()。
《中华人民共和国矿产资源法》规定:关闭矿山,必须提出()及有关采掘工程、不安全隐患、土地复垦利用、环境保护的资料,并按照国家规定报请审查批准。
企业实施科学化、规范化安全管理的工作基础是()。
我国的政策性银行有()。
下列关于出口信贷的说法中正确的是()。
根据会计法律制度的规定,记账凭证的保管期限为()年。
《中共中央关于推进农村改革发展若干重大问题的决定》指出,要继续推进农村综合改革,在()年基本完成乡镇机构改革任务。
追求与放弃都是正常的生活态度,有所追求就应有所放弃,有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是_____,而是一种_____。依次填入横线处的词语,最恰当的一组是()。
DebateovertheUseofRenewableEnergyAusubelofRockefellerUniversityinNewYork,USsaysthekeyrenewable(可再生的)ener
HowmanybuildingplacesdoestheBuildingServicelookateachmonthtoseeifthingsaregoingonwell?Whatshouldyoudoif
最新回复
(
0
)