首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设区域D为χ2+y2≤R2,则=________.
设区域D为χ2+y2≤R2,则=________.
admin
2018-07-18
37
问题
设区域D为χ
2
+y
2
≤R
2
,则
=________.
选项
答案
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Wdk4777K
0
考研数学二
相关试题推荐
考虑一元函数f(x)的下列4条性质:①f(x)在[a,b]上连续.②f(x)在[a,b]上可积.③f(x)在[a,b]上可导.④f(x)在[a,b]上存在原函数.以P→Q表示由性质P可推出性质Q,则有()
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1+bα4,aα2+bα3,aα3+bα2,aα4+bα1也是Ax=0的基础解系的充分必要条件是()
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解.试求:方程组的全部解,并用对应的齐次方程组的基础解系表示全部解;
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[*]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1
设区域D是由y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-1),(X,Y)服从区域D上的均匀分布.(1)求(X,Y)的密度函数;(2)求X,Y的边缘密度函数.
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=x2,求曲线C2的方程.
随机试题
①一个星期后,李某拿到“家庭农场”的营业执照。②党的十八大后,国家出台政策,鼓励农民办家庭农场。③李某向有关单位提出办“家庭农场”的申请。④李某成了合法的农场主。⑤村民李某听说有政策支持,开始筹款,准备租地。下列对上述5个事件排序最合理的是()。
癫证症状标准中包括的症状有
A血和尿淀粉酶活性升高伴脂肪酶活性升高B血清S型淀粉酶升高而P型淀粉酶正常,脂肪酶活性不升高C血清S型淀粉酶和P型淀粉酶可同时升高,也可为2型中任何一型升高D血清淀粉酶活性升高伴尿淀粉酶活性降低E血清淀粉酶
A.降逆止呃,益气清热B.温中益气,降逆止呃C.疏肝泄热,活血止痛D.化痰散饮,和胃降逆E.行气散结,降逆化痰
患者男,32岁,咳嗽1月余,伴低热、痰中带血10天,胸片示:右肺上叶尖段炎症,伴有空洞形成。最可能的诊断是
《巴塞尔新资本协议》只对()的定义作了一个尝试性的规定:“包括但不限于因监管措施和解决民商事争议而支付的罚款、罚金或者惩罚性赔偿所导致的风险敞口。”
在进行两个投资方案比较时,投资者完全可以接受的方案是()。
“理解”这一层次水平属于的台阶目标是__________;“模拟应用"这一层次水平属于的台阶目标是__________;“巩固转化”这一层次水平属于的台阶目标是__________。
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____________.
ThenoisethataffectsseacreaturesconiesfromthefollowingEXCEPT
最新回复
(
0
)