首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ1;(2)Anβ.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ1;(2)Anβ.
admin
2015-08-14
48
问题
设A是三阶矩阵,λ
1
=1,λ
2
=2,λ
3
=3是A的特征值,对应的特征向量分别是 ξ
1
=[2,2,一1]
T
,ξ
2
=[一1,2,2]
T
,ξ
3
=[2,一1,2]
T
.又β=[1,2,3]
T
,计算:(1)A
n
ξ
1
;(2)A
n
β.
选项
答案
(1)因Aξ
1
=λ
1
ξ
1
,故A
n
ξ
1
=λ
1
n
ξ
1
,故A
n
ξ
1
=1.ξ
1
=[*] (2)利用Aξ
i
=λ
i
ξ
i
有A
n
ξ
i
=λ
i
n
ξ
i
,将β表成ξ
1
,ξ
2
,ξ
3
的线性组合.设 β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Wg34777K
0
考研数学二
相关试题推荐
设总体X的概率密度为f(x;α,β)=,其中α,β是未知参数,利用总体X的如下样本值:-0.5,0.3,-0.2,-0.6,-0.1,0.4,0.5,,0.8,求α的矩估计值和最大似然估计量。
设齐次线性方程组有无穷多解,A为三阶矩阵且有三个特征值1,-1,0,它们分别对应着特征向量ξ1=(1,2a,-1)T,ξ2=(a,a+3,a+2)T,ξ3=(a-2,-1,a+1)T,求:常数a.
设y(x)为可导函数,且满足y(0)=2及+y(x)=∫0x2y(t)dt+ex,则y(x)=________.
设A,P均为3阶矩阵,P={γ1,γ2,γ3},其中γ1,γ2,γ3为3维列向量且线性无关,若A(γ1,γ2,γ3)=(γ3,γ2,γ1).证明A可相似对角化。
设m与n都是常数,反常积分∫0+∞dx收敛,则m与n的取值范围()。
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+o(x3).
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设随机变量X的慨率密度为f(x),EX存在,若对常数a,有f(a+x)=f(a-x),则EX=()
设a2+b2=1(a≤0,b≥0),求曲线y=x2+ax与直线y=bx所围区域面积S的最大值与最小值.
随机试题
期中考试后,老师让同学们针对成绩进行反思总结。甲同学说:“一分耕耘一分收获,我这次考试考前进行了充分的复习,我尽了自己最大的努力。”乙同学说:“别人太强了,我太难了,我天生就不是学习的料,再怎么复习也没有用。”丙同学说:“我这次考得好,主要是因为复习的都考
弹性人力资源规划的重点是()
降钙素降低血钙和血磷的主要机制是
口腔颌面一般检查不包括以下哪种检查
银行业从业人员应当坚持同业间公平、有序竞争的原则,下列()行为采用了不正当竞争手段。
商业银行应当在接到核查通知的()个工作日内向征信服务中心作出核查情况的书面答复。
下列关于各类期权的说法,正确的有()。
2005年5月份全国基本型乘用车的产量是()。2006年5月份全国乘用车销量最大的车型是()。
说明:本题中指数的计算方法为:当年的数值与上一年数值的比乘以100。举例来说。假设第一年的数值为m,第二年的数值为n,则第二年的指数为100×(n/m)。假设1995年的国内生产总值为200亿,那么1996年的国内生产总值为()。
MedicineDirectionsTaketwotabletswithwarmwater,followedbyonetableteveryeighthours,asrequired.Formaximumnig
最新回复
(
0
)