首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
admin
2019-01-19
34
问题
已知α
1
=(1,1,一1)
T
,α
2
=(1,2,0)
T
是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
选项
A、(1,一1,3)
T
B、(2,1,一3)
T
。
C、(2,2,一5)
T
。
D、(2,一2,6)
T
。
答案
B
解析
如果A选项是Ax=0的解,则D选项必是Ax=0的解。因此A、D两项均不是Ax=0的解。
由于α
1
,α
2
是Ax=0的基础解系,所以Ax=0的任何一个解η均可由α
1
,α
2
线性表示,也即方程组x
1
α
1
+x
2
α
2
=η必有解,而
可见第二个方程组无解,即(2,2,一5)
T
不能由α
1
,α
2
线性表示,故选B。
转载请注明原文地址:https://kaotiyun.com/show/WmP4777K
0
考研数学三
相关试题推荐
设A是m×n矩阵,对矩阵A作初等行变换得到矩阵B,证明:矩阵A的列向量与矩阵B相应的列向量有相同的线性相关性.
已知矩阵A=与对角矩阵相似,求An.
设A是三阶实对称矩阵,特征值是1,0,一2,矩阵A的属于特征值1与一2的特征向量分别是(1,2,1)T与(1,一1,a)T,求Ax=0的通解.
设A=,若Ax=0的基础解系由2个线性无关的解向量构成,
设线性方程组A3×4X=b有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2是任意常数,则下列向量中也是AX=b的解向量的是().
设实矩阵A=(aij)n×n的秩为n一1,αi为A的第i个行向量(i=1,2,…,n).求一个非零向量x∈Rn,使x与α1,α2,…,αn均正交.
设A为三阶实对称矩阵,且存在可逆矩阵P=.(1)求a,b的值;(2)求正交变换x=Qy,化二次型f(x1,x2,x3)=XTA*x为标准形,其中A*为A的伴随矩阵;(3)若kE+A*合同于单位矩阵,求k的取值范围.
设A=.(1)若矩阵A正定,求a的取值范围.(2)若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
随机试题
古代决策的表现及特点。
不属于婴儿抚触的目的是()
面部疖痈易发生全身并发症的原因,除外()
甲未经乙同意而以乙的名义签发一张商业汇票,汇票上记载的付款人为丙银行。丁取得该汇票后将其背书转让给戊。下列哪一说法是正确的?(2013年卷三第31题)
下列等式中哪一个可以成立?
被告人林某因涉嫌故意杀害其妻子郭某一案依法在甲市中级人民法院开庭审理。在法庭调查阶段,被害人郭某的诉讼代理人宋某认为被告人林某的朋友郝某提供的证人证言是捏造的,并且该证人证言对林某的定罪量刑有重大的影响,于是宋某申请证人郝某出庭作证,人民法院同意了宋某的请
债权人行使撤销权的必要费用,由债权人负担。()
踢猫效应是指对弱于自己或者等级低于自己的对象发泄不满情绪,而产生的连锁反应。它描绘的是一种典型的坏情绪的传染。人的不满情绪和糟糕心情,一般会沿着等级和强弱组成的社会关系链条依次传递。根据上述定义,下列不属于踢猫效应的是:
已知有6个顶点(项点编号为0~5)的有向带权图G,其邻接矩阵A为上三角矩阵,按行为主序(行优先)保存在如下的一维数组中。要求:画出有向带权图G。
在数据库设计中,“设计E-R图”是______阶段的任务。
最新回复
(
0
)