首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
admin
2019-01-19
83
问题
已知α
1
=(1,1,一1)
T
,α
2
=(1,2,0)
T
是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )
选项
A、(1,一1,3)
T
B、(2,1,一3)
T
。
C、(2,2,一5)
T
。
D、(2,一2,6)
T
。
答案
B
解析
如果A选项是Ax=0的解,则D选项必是Ax=0的解。因此A、D两项均不是Ax=0的解。
由于α
1
,α
2
是Ax=0的基础解系,所以Ax=0的任何一个解η均可由α
1
,α
2
线性表示,也即方程组x
1
α
1
+x
2
α
2
=η必有解,而
可见第二个方程组无解,即(2,2,一5)
T
不能由α
1
,α
2
线性表示,故选B。
转载请注明原文地址:https://kaotiyun.com/show/WmP4777K
0
考研数学三
相关试题推荐
设问a,b为何值时,β可由α1,α2,α3线性表示,且表示法唯一,写出线性表示式.
已知向量组(I)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)β1=(1,一3,6,一1)T,β2=(a,0,6,2)T等价,求a,b的值.
设A是n阶反对称矩阵.(1)证明:对任何n维列向量α,恒有αTAα=0.(2)证明:对任何非零常数c,矩阵A+cE恒可逆.
设A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT—E且B的行向量是齐次方程组Ax=0的解,P是m阶可逆矩阵,证明:矩阵PB的行向量是Ax=0的基础解系.
已知α1=(1,1,0)T,α2=(1,3,一1)T,α3=(2,4,3)T,α4=(1,一1,5)T,A是3阶矩阵,满足Aα1=α2,Aα2=α3,Aα3=α4,求Aα4.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的变换.
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
随机试题
心源性水肿发生的特点为___________,肾源性水肿发生的特点为___________,甲状腺功能减退症患者水肿发生的特点为___________。
A.一般用于皮肤表面,面积较小的肿瘤B.一般用于皮肤表面,面积较大的肿瘤C.一般用于皮下浅层组织肿瘤或表浅淋巴结D.一般用于体表下2~5cm深的肿瘤或淋巴结E.一般用于体表下5~10cm深的肿瘤深部X线机
总承包单位甲公司将其承揽的部分专业工程依法分包给乙公司,分包合同约定,如因施工问题导致建设单位索赔,双方各自承担索赔额的50%。由于专业工程施工过程中出现了严重事故隐患,甲公司要求乙公司停工整改,但乙公司以保证施工进度为由迟迟不予整改,最终导致重大生产安全
影响企业会计凭证传递的因素有()。
下列选项中,不属于衡量消费者收入水平指标的是()。
某企业为一般纳税人,增值税税率为17%,2013年7月发生下列业务:(1)购买材料一批,专用发票注明:价款300万元,增值税17万元,另外支付运费1万元,已入库,并付款;(2)销售产品一批,专用发票注明:价款500万元,增值税85万元,
培训中对培训效果的跟踪与反馈包括()。
2003年,医药卫生总的赢利比2002年增长2003年,中成药的制造业赢利占医药制造业赢利的比重比2002年:
一位外国游客想了解齐鲁文化,下列最能代表齐鲁文化特点的旅游路线是:
Tim’sbrotheris________thanhim.
最新回复
(
0
)