首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则( ).
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则( ).
admin
2013-09-15
113
问题
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=
,则( ).
选项
A、C=P
-1
AP
B、C=PAP
-1
C、C=P
T
AP
D、C=PAP
T
答案
B
解析
根据已知条件,用初等矩阵描述有
故选(B).
转载请注明原文地址:https://kaotiyun.com/show/KI34777K
0
考研数学二
相关试题推荐
设总体X的概率密度为其中λ>0是未知参数,α>0是已知常数.试根据来自总体X的简单随机样本X1,X2,…,Xn,求λ的最大似然估计量.
[2003年]求幂级数的和函数f(x)及其极值.
下列矩阵中,与矩阵相似的为()
(09年)设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记FZ(z)为随机变量Z=Xy的分布函数,则函数FZ(z)的间断点个数为【】
[2017年]若函数在x=0处连续,则().
[2007年]曲线y=1/x+ln(1+ex)渐近线的条数为().
(08年)如图,曲线段的方程为y=f(χ),函数f(χ)在区间[0,a]上有连续的导数,则定积分∫0aχf′(χ)dχ等于【】
(10年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限.
(00年)设函数f(χ)在[0,π]上连续,且∫0πf(χ)dχ=0,∫0πf(χ)cosχdχ=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
[2003年]设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
UnlikeBritain,theUSdoesnothaveanationalhealthcareservice.Mostpeoplebuymedicalinsurancetohelppayformedicalc
社区健康教育的对象不包括
兄弟姐妹间进行器官移植引起排斥反应的物质是
工程量清单作为招标文件的组成部分,一个最基本的功能是作为信息的载体,为潜在的投标者提供必要的信息。对于分部分项工程量清单,说法不正确的是()。
一台实验性的微波衣服干燥机既不烘烤空气也不烘烤布料。相反,它烘烤的是衣服里的水,所以可以在较低温度下运作从而能节省电力和保护易损纤维。微波通常是用来加热金属物品,但微波干燥机的研究人员正在完善一项程序,可以阻止大头针等细金属被加热并燃烧衣服。下哪项
《中华人民共和国卫生法》的实施不包括()。
人类是一种文化动物。人类的行为不仅被先天的生物本能所决定.而且也受到后天的文化和社会等诸多因素的影响。爱美之心,人皆有之。然而,任何美妙的东西背后,都有并不美好的本质或起源,不管你是否能意识到。美丽往往是谎言,而实话往往很难听。浏览网页,你可能被华丽的页面
SomehistorianssaythatthemostimportantcontributionofDwightEisenhower’spresidency(总统任期)inthe1950swastheU.S.int
在信息系统开发方法中,不属于结构化方法指导思想的是()。
Iscomputercodingaforeignlanguage?A)Ascomputercodinghasbecomeanincreasinglysought-afterskill,moreK-12school
最新回复
(
0
)