首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下3个命题: ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A 正确的个数为 (
以下3个命题: ①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A 正确的个数为 (
admin
2019-03-11
58
问题
以下3个命题:
①若数列{u
n
}收敛于A,则其任意子数列{u
n
i
}必定收敛于A;
②若单调数列{x
n
}的某一子数列{x
n
i}收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n+1
}都收敛于A,则数列{x
n
}必定收敛于A
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有
|u
n
-A|<ε,
则当n
i
>N时,恒有
因此数列
也收敛于A,可知命题正确.
对于命题②,不妨设数列{x
n
}为单调增加的,即
x
1
≤x
2
≤…≤x
n
≤…,
其中某一给定子数列
收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有
由于数列{x
n
}为单调增加的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有
从而 |x
n
-A|<ε.
可知数列{x
n
}收敛于A因此命题正确.
对于命题③,因
,由极限的定义可知,对于任意给定的ε>0,必定存在自然数N
1
,N
2
:
当2n>N
1
时,恒有|x
2n
-A|<ε;
当2n+1>N
2
时,恒有|x
2n+1
-A|<ε.
取N=max{N
1
,N
2
},则当n>N时,总有|x
n
-A|<ε.
因此
=A可知命题正确.
故答案选择(D).
转载请注明原文地址:https://kaotiyun.com/show/WxP4777K
0
考研数学三
相关试题推荐
已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=________。
设离散型随机变量X的分布律为P{X=i}=pi+1,i=0,1,则p=________。
设A=(aij)是三阶正交矩阵,其中a33=-1,b=(0,0,5)T,则线性方程组Ax=b必有一个解是______
设A、B为同阶实对称矩阵,A的特征值全大于a,B的特征值全大于b,a、b为常数,证明:A+B的特征值全大于a+b.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a2k,…,annk;f(A)的对角线元素为f(
设3阶矩阵A的各行元素之和都为2,向量α1=(一1,1,1)T,α2=(2,一1,1)T都是齐次线性方程组AX=0的解.求A.
设随机事件A与B互不相容,且P(A)>0,P(B)>0,则下列结论中一定成立的是
设f(x)连续,且则下列结论正确的是().
设f(x)在x0的邻域内三阶连续可导,且f'(x0)=f"(x0)=0,f"'(x0)>0,则下列结论正确的是().
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵的秩为r,则()
随机试题
商女不知亡国恨,_______。(唐.杜牧《泊秦淮》)
下列关于急性胰腺炎病因的叙述,错误的是()(2005年)
下列不符合绒毛膜癌的描述是
下列不属于现金流动性分析指标的是()。
下列哪种金融工具不属于短期金融工具( )。
()是劳动者与用人单位确立劳动关系、明确双方权利义务关系的协议。
同以往我国政府人事管理制度相比较,我国当前实行的公务员制度的特色是()
非银行公众向中央银行出售债券1万元,将所得钞票存入商业银行,央行()1万元,商业银行()1万元。
求∫02adx(x+y)2dy.
WhenIwasachild,myfamilyusedtogoonholidayeveryyeartovisitourrelativesinthenorth-eastofEngland.Oneofthem
最新回复
(
0
)