首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的分布函数为 其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本. (Ⅰ)当α=1时,求未知参数β的矩估计量; (Ⅱ)当α=1时,求未知参数β的最大似然估计量; (Ⅲ)当β=2时,求未知参
设随机变量X的分布函数为 其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本. (Ⅰ)当α=1时,求未知参数β的矩估计量; (Ⅱ)当α=1时,求未知参数β的最大似然估计量; (Ⅲ)当β=2时,求未知参
admin
2021-01-25
108
问题
设随机变量X的分布函数为
其中参数α>0,β>1,设X
1
,X
2
,…,X
n
为来自总体X的简单随机样本.
(Ⅰ)当α=1时,求未知参数β的矩估计量;
(Ⅱ)当α=1时,求未知参数β的最大似然估计量;
(Ⅲ)当β=2时,求未知参数α的最大似然估计量.
选项
答案
总体X的概率密度为: f(χ;α;β)=F′
X
(χ;α;β)=[*] (Ⅰ)α=1时,f(χ;α;β)=[*] ∴EX=∫
1
+∞
χ.β
-β-1
χdχ=[*], 令[*],得β的矩估计量为:[*]; (Ⅱ)α=1时,似然函数为 [*] ∴χ
1
,…,χ
n
>1时,lnL=nlβ-(β+1)ln(χ
1
…χ
n
), ∴[*]-ln(χ
1
…χ
n
),令[*]=0,解得β=[*] 故知卢的最大似然估计为[*] (Ⅲ)β=2时,X的概率密度为: [*] 故似然函数为: [*] 可见[*]>α时,α越大则L越大,为使L达最大,可取α=[*],故口的最大似然估计为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/Wyx4777K
0
考研数学三
相关试题推荐
[2004年]设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,β不能由α1,α2,α3线性表示;
假设随机变量X与Y同分布,X的概率密度为求1/X2的数学期望.
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
已知随机变量X的概率密度为求随机变量Y=1/X的数学期望.
[2014年]设随机变量X,Y的概率分布相同,X的概率分布为且X与Y的相关系数求(X,Y)的概率分布;
设z=xg(x+y)+yφ(xy),其中g,φ具有二阶连续导数,则
设X与Y独立,下表列出(X,Y)的联合分布列和关于X、Y的边缘分布列中的部分数值,请填上空白处,并填空求P(X+Y≤1)=_______.P{X+Y≤1|X≤0}=_______.
设函数F(r)当r>0时具有二阶连续导数,令则当x,y,z与t不全为零时=
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若
议{un},{cn}为正项数列,证明:若对一切正整数n满足cnun-cn+1un+1,且发散,则un也发散;
随机试题
气滞证的临床表现特点是
既有祛风湿,又有强筋骨功效的药物是()
城市生活垃圾产生量预测的方法一般有()。
假设其他条件相同,如果企业的增值率(不含税增值额/不含税销售额)高于无差别点增值率(3%/17%),则选择成为一般纳税人有助于减轻增值税税负。()
简述影响问题解决的主要因素。
2014年,房地产开发企业房屋施工面积726482万平方米,比上年增长9.2%,增速比1—11月回落0.9个百分点。其中,住宅施工面积515096万平方米,增长5.9%。房屋新开工面积179592万平方米,下降10.7%,降幅扩大1.7个百分点。其中,住宅
辩论赛的主办方决定,除非是来自法学院的大二学生,否则不能取得参赛资格。以下哪项如果为真,说明主办方上述决定没有得到贯彻?I.黄芳是来自法学院的大二学生,没有取得参赛资格Ⅱ.李磊是来自经济学院的学生,取得了参赛资格Ⅲ.刘飞不是大二学生,取得了参赛资格
试析作为“社会群体成员”的受众观。
下列关于美国宪法的表述,正确的是()。
September25,2010TLEFCMr.JohnSutton490LandsdowneRoadBuffalo,NY14203DearJohn,Thankyouverymuchforyouremail.Th
最新回复
(
0
)