首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的分布函数为 其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本. (Ⅰ)当α=1时,求未知参数β的矩估计量; (Ⅱ)当α=1时,求未知参数β的最大似然估计量; (Ⅲ)当β=2时,求未知参
设随机变量X的分布函数为 其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本. (Ⅰ)当α=1时,求未知参数β的矩估计量; (Ⅱ)当α=1时,求未知参数β的最大似然估计量; (Ⅲ)当β=2时,求未知参
admin
2021-01-25
123
问题
设随机变量X的分布函数为
其中参数α>0,β>1,设X
1
,X
2
,…,X
n
为来自总体X的简单随机样本.
(Ⅰ)当α=1时,求未知参数β的矩估计量;
(Ⅱ)当α=1时,求未知参数β的最大似然估计量;
(Ⅲ)当β=2时,求未知参数α的最大似然估计量.
选项
答案
总体X的概率密度为: f(χ;α;β)=F′
X
(χ;α;β)=[*] (Ⅰ)α=1时,f(χ;α;β)=[*] ∴EX=∫
1
+∞
χ.β
-β-1
χdχ=[*], 令[*],得β的矩估计量为:[*]; (Ⅱ)α=1时,似然函数为 [*] ∴χ
1
,…,χ
n
>1时,lnL=nlβ-(β+1)ln(χ
1
…χ
n
), ∴[*]-ln(χ
1
…χ
n
),令[*]=0,解得β=[*] 故知卢的最大似然估计为[*] (Ⅲ)β=2时,X的概率密度为: [*] 故似然函数为: [*] 可见[*]>α时,α越大则L越大,为使L达最大,可取α=[*],故口的最大似然估计为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/Wyx4777K
0
考研数学三
相关试题推荐
[2003年]设α1,α2,…,α3均为n维向量,下列结论中不正确的是().
[2005年]设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为().
计算
假设随机变量X与Y同分布,X的概率密度为已知事件A={X>a}和B={Y>a}独立,且P(A+B)=3/4,求常数a;
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)的表达式.
计算反常二重积分,D是第一象限内,且位于曲线y=4x2和y=9x2之间的区域。
已知是矩阵的一个特征向量.问A能否相似于对角矩阵?并说明理由.
设α1,α2,…,αs为线性方程组AX=0的一个基础解系.β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βs也为AX=0的
设函数f(x)在[a,b]上有三阶连续导数。(Ⅰ)写出f(x)在[a,b]上带拉格朗日余项的二阶泰勒公式;(Ⅱ)证明存在一点η∈(a,b),使得
[2003年]设二次型f(x2,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值;
随机试题
我国古典文学作品中,思想性和艺术性结合最好的是()。
了解智力活动的动作结构,明确活动的方向是智力技能形成哪一阶段的特点【】
患者,女,35岁,已婚。患崩漏1年余。经血非时而至,经量甚多、色淡、质稀,面色苍白,气短懒言,大便不成形,舌淡苔薄白,脉沉弱。其证候是()
关于进度计划调整的说法,正确的是()。
下列各项,应通过“固定资产清理”科目核算的有()。
将风险资产进行对冲属于()。
一个基督徒问牧师天堂与地狱之间有什么差别,牧师把基督徒带到地狱,看到地狱里有一口巨大的盛满丰富食物的铁锅,地狱里的每个人都拿着一个长长的勺子去舀食物吃,但是勺子把太长,他们无法把食物送进自己嘴里,结果只能空着肚子饱受饥饿的煎熬,望锅兴叹。牧师又把基督徒带到
()是依照国家法律,以行政的手段进行指挥和管理,使公安机关高效率地执行行政职能。
选拔领导人才是领导者做好用人工作的重中之重。()
阅读以下说明和流程图,将应填入(n)处的字句写在对应栏内。【说明】已知头指针分别为La和lb的有序单链表,其数据元素都是按值非递减排列。现要归并La和Lb得到单链表Lc,使得Lc中的元素按值非递减排列。程序流程图如下所示:
最新回复
(
0
)