首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
admin
2018-06-14
34
问题
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
选项
答案
必要性.对矩阵A按列分块A=(α
1
,α
2
,…,α
n
),则 [*]b,Ax=b有解→α
1
,α
2
,…,α
n
可表示任何n维向量b →α
1
,α
2
,…,α
n
可表示e
1
=(1,0,0,…,0)
T
,e
2
=(0,1,0,…,0)
T
, …,e
n
=(O,0,0,…,1)
T
→r(α
1
,α
2
,…,α
n
)≥r(e
1
,e
2
,…,e
n
)=n→r(A)=n. 所以|A|≠0. 充分性.由克莱姆法则,行列式|A|≠0时方程组必有唯一解,故[*]b,Ax=b总有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/X1W4777K
0
考研数学三
相关试题推荐
的通解为________.
微分方程y’+ytanx=cosx的通解为________.
求下列极限:
已知数列{xn}满足:x0=25,xn=arctanxn-1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设A=.已知线性方程组Ax=b存在2个不同的解,(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次方程组Ax=b的互不相等的解,则对应的齐次方程组Ax=0的基础解系
(Ⅰ)求函数所满足的二阶常系数线性微分方程;(Ⅱ)求(Ⅰ)中幂级数的和函数y(x)的表达式.
设A是n阶矩阵,A2=A,r(A)=r,证明A能对角化,并求A的相似标准形.
已知A,B都是凡阶矩阵,且P-1AP=B,若a是矩阵A属于特征值λ的特征向量,则矩阵B必有特征向量_______.
随机试题
下列不属于公安机关治安行政处罚措施的是()。
水肿在辨证上以何为纲
合同具有的法律特征包括()。
下列属于财产权的是()。
工程咨询公司提供服务的贷款方包括()。
基金公司在风险管理中应当遵循的基本原则包括()。Ⅰ.全面性原则Ⅱ.独立性原则Ⅲ.权责匹配原则Ⅳ.适时性原则
证券账号持有人查询证券余额可在办理了指定交易或转托管的()起,凭身份证和证券账户卡到指定交易或托管的证券营业部办理。
下列各项中,不应计入财务费用核算的是()。
LittleLadyStartsBigWarHarrietBeecherStowehadpouredherheartintoheranti-slavery(反对奴隶制度)bookUncleTom’sCabin.【4
A、Moreandmorepeoplearesufferingfromheartdisease.B、Moreandmoredoctorsarefocusingtoomuchondietandexercise.C、P
最新回复
(
0
)