首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
问常数a,b各取何值时,方程组 有唯一解,无解,或有无穷多解?并在有无穷多解时写出其通解.
问常数a,b各取何值时,方程组 有唯一解,无解,或有无穷多解?并在有无穷多解时写出其通解.
admin
2020-06-05
54
问题
问常数a,b各取何值时,方程组
有唯一解,无解,或有无穷多解?并在有无穷多解时写出其通解.
选项
答案
方法一 对方程组的增广矩阵进行初等行变换,得 [*] (1)当a≠﹣1,b为任何值时,R(A)=[*]=4,方程组有唯一解; (2)当a=﹣1,b≠0时,R(A)=2,[*]=3,方程组无解; (3)当a=﹣1,b=0时,R(A)=[*]=2﹤4,方程组有无穷多解.此时,增广矩阵变为 [*] 由此得方程组的通解为[*] 其中c
1
,c
2
为任意常数. 方法二 方程组系数矩阵行列式的值为 [*] (1)当a≠﹣1,b为任何值时,有唯一解; (2)当a=﹣1,b≠0时, [*] 则R(A)=2,[*]=3,故方程组无解; (3)当a=﹣1,b=0时, [*] 则[*]=R(A)=2﹤4,因此方程组有无穷多解,且通解为 [*] 其中c
1
,c
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/X8v4777K
0
考研数学一
相关试题推荐
设n阶(n≥3)矩阵若矩阵A的秩为n-1,则a必为()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设函数f(x)满足关系f"(x)+f’2(x)=x,且f’(0)=0,则().
设x→0时ax2+bx+c-cosx是比x2高阶的无穷小,其中a,b,c为常数,则()
设A,B是任意两个随机事件,又知BA,且P(A)<P(B)<1,则一定有
设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设f(x)在[0,1]二阶可导,且f’’(x)<0,则下列命题正确的是()-
设有命题以上四个命题中正确的个数为()
已知α1=(1,1,-1)T,α2=(1,2,0)T是齐次方程组Aχ=0的基础解系,那么下列向量中Aχ=0的解向量是()
随机试题
1920年,中国共产党的最早组织建立于()
Ifyouliveinalargecity,youarequitefamiliarwithsomeoftheproblemsofnoise,butbecauseofsomeofitsharmfuleffec
红斑呈红色的原因是
在刑事再审中,下列哪些情形应当依法开庭审理?()
下列关于个人信息的说法,错误的是()。
背景国家某重点工程氧化铝生产基地二期工程项目采用采购及施工总承包(PC)方式,总承包方对6种40台高压容器进行设备采购招标。其中16台压煮器制造工艺复杂,国内仅有少数专业公司有能力制造。为了搞好这批重要设备的采购工作,总承包方按照设备采
某公司以1300万元的报价中标一项直埋热力管道工程,并于收到中标通知书50d后,接到建设单位签订工程合同的通知。招标书确定工期为150d,建设单位以采暖期临近为由,要求该公司即刻进场施工并要求在90d内完成该项工程。该公司未严格履行合同约定
下列所得不属于来源于中国境内所得的是()。
在IDEF0需求建模方法中,每个功能活动可以用带箭头的矩形框来表示,矩形框右边的箭头代表该活动的()。
ReferencesFiltration1.Coccagno,Luciano,Filtration:TheoreticalConsiderations&Practical.Results,CulliganInternatio
最新回复
(
0
)