首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=________。
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=________。
admin
2020-05-09
32
问题
已知4维列向量α
1
,α
2
,α
3
线性无关,若β
i
(i=1,2,3,4)非零且与α
1
,α
2
,α
3
均正交,则秩r(β
1
,β
2
,β
3
,β
4
)=________。
选项
A、1.
B、2.
C、3.
D、4.
答案
A
解析
设α
1
=(a
11
,a
12
,a
13
,a
14
)
T
, α
2
=(a
21
,a
22
,a
23
,a
24
)
T
, α
3
=(a
31
,a
32
,a
33
,a
34
)
T
,
那么β
i
与α
1
,α
2
,α
3
均正交,即内积β
i
T
α
i
=0(j=1,2,3,4).
亦即β
i
(j=1,2,3,4)是齐次方程组
的非零解.
由于α
1
,α
2
,α
3
线性无关,故系数矩阵的秩为3.所以基础解系有4—3=1个解向量.从而r(β
1
,β
2
,β
3
,β
4
)=1.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/X984777K
0
考研数学二
相关试题推荐
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
证明:若单调数列{xn}有一收敛的子数列,则数列{xn}必收敛.
设函数f(x)在[0,1]上连续,(0,1)内可导,且,证明:在(0,1)内存在一点c,使f’(c)=0.
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α0,A2α2=α0.证明α1,α2,α3线性无关.
设向量α1,α2,…αn—1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…αn—1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵P使得P一1AP=A。
求积分:
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
随机试题
甲是A大学的老师,在承担学校交付的科研项目中完成水坝节能技术T1。随后B公司与甲订立了一份技术委托开发协议,委托甲为B公司开发完成一项电灯的节能技术T2,并向甲支付相应的报酬,但未明确约定知识产权的归属,甲在约定的时间内完成了合同约定的任务。随后,甲与B公
乳腺导管内癌宫颈息肉
混凝土立方体劈裂抗拉强度试验中,混凝土强度等级大于C60时的加荷速度应取0.08~0.10MPa/s。()
公开招标和邀请招标的特殊规定包括()。
“在一个国家中,法律永远是由强者的权力制定的。”对这句话的理解正确的是()
设an>0(n=1,2,…)且{an}n-1∞单调减少,又级数的敛散性.
改变二重积分I=∫0πdx∫0sinxf(x,y)dy的积分次序得到I=________。
关系数据库的关系演算语言是以【】为基础的DML语言。
Thehumanbraincontains10thousandmillioncellsandeachofthesemayhaveathousandconnections.Suchenormousnumbersused
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
最新回复
(
0
)