首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=________。
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=________。
admin
2020-05-09
44
问题
已知4维列向量α
1
,α
2
,α
3
线性无关,若β
i
(i=1,2,3,4)非零且与α
1
,α
2
,α
3
均正交,则秩r(β
1
,β
2
,β
3
,β
4
)=________。
选项
A、1.
B、2.
C、3.
D、4.
答案
A
解析
设α
1
=(a
11
,a
12
,a
13
,a
14
)
T
, α
2
=(a
21
,a
22
,a
23
,a
24
)
T
, α
3
=(a
31
,a
32
,a
33
,a
34
)
T
,
那么β
i
与α
1
,α
2
,α
3
均正交,即内积β
i
T
α
i
=0(j=1,2,3,4).
亦即β
i
(j=1,2,3,4)是齐次方程组
的非零解.
由于α
1
,α
2
,α
3
线性无关,故系数矩阵的秩为3.所以基础解系有4—3=1个解向量.从而r(β
1
,β
2
,β
3
,β
4
)=1.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/X984777K
0
考研数学二
相关试题推荐
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
[2015年]设函数y=y(x)是微分方程y"+y′一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=________.
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫abf’(x)|dx(a<x<b).
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
设矩阵行列式|A|=一1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵P使得P一1AP=A。
设函数y=y(x)由2xy=x+y确定,求dy|x=0
设f(x)在区间[a,b]上可导,且满足证明至少存在一点ξ∈(a,b),使得f’(ξ)=f(ξ).tanξ.
设a=(1,1,-1)T是A=的一个特征向量.问A是否可以对角化?说明理由.
随机试题
关于每分输出量的叙述,错误的是
有关肿瘤倍增时间的描述错误的是
阻塞性黄疸时,血清酶谱的变化正确的是
下列哪项不属于外科急腹症的手术方式( )
治疗经行身痛之血虚证的代表方剂是()
采用侵蚀模式预测水土流失时,常用方法包括()。
县级以上人民政府城乡规划行政主管部门实施行政监督检查权的基本前提是必须遵循依法行政,下列选项中不属于其具体内容的是()
甲公司期末原材料的账面余额为100万元,数量为10吨。该原材料专门用于生产与乙公司所签合同约定的20台Y产品该合同约定:甲公司为乙公司提供Y产品20台,每台售价10万元(不含增值税,本题下同)。将该原材料加工成20台Y产品尚需加工成本总额为95万元。估计销
设一棵树的度为3,其中度为3,2,1的结点个数分别为4,1,3。则该棵树中的叶子结点数为
Howoldwastheshoe?
最新回复
(
0
)