首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式 f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ), 其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式 f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ), 其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
admin
2018-06-12
83
问题
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式
f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),
其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
选项
答案
曲线y=f(χ)在点(4,f(4))处的切线方程是 y=f(4)+f′(4)(χ-4). 由f(χ)的周期性以及f(χ)在χ=1处的可导性知f(4)=f(1),f′(4):f′(1),代入即得所求切线方程为 y=f(1)+f′(1)(χ-4). 由f(χ)的连续性可知 [*][f(1+tanχ)-4f(1-3tanχ)]=[*][26χ+g(χ)] [*]f(1)-4f(1)=0[*]f(1)=0. 再由f(χ)在χ=1处的可导性与f(1)=0可得 [*] 在①式左端中作换元tanχ=t,则有 [*] 而①式右端 [*] 从而有f′(1)=2. 于是曲线y=f(χ)在点(4,f(4))处的切线方程为y=2(χ-4),即y=2χ-8.
解析
转载请注明原文地址:https://kaotiyun.com/show/XUg4777K
0
考研数学一
相关试题推荐
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明:(1)η*,ξ1…,ξn-r线性无关;(2)η*,η*+ξ1,…,η*+ξn-r线性无关.
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:(1)a1能由a2,a3线性表示;(2)a4不能由a1,a2,a3线性表示.
已知矩阵A的伴随阵A*=diag(1,1,1,8),且ABA-1=BA-1+3E,求B.
设证明:行列式|A|=(n+1)an.
设随机变量Xi~B(i,0.1),i=1,2,…,15,且X1,X2,…,X15相互独立,根据切比雪夫不等式,则P的值
设z=,其中f(u,v)是连续函数,则dz=________.
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).证明:f(x1)f(x2)≥
设证明:y=f(x)为奇函数,并求其曲线的水平渐近线;
求过两点A(0,1,0),B(-1,2,1)且与直线x=-2+t,y=1-4t,z=2+3t平行的平面方程.
求解初值问题
随机试题
Thedifferencesinrelativegrowthofvariousareasofscientificresearchhaveseveralcauses.【T1】Someofthesecausesarecomp
与β-内酰胺类抗生素联用能增加其抗菌活性的是()
A、灵芝B、松萝C、乳香D、苏合香E、茯苓药用菌核的药材为
按照实际成本进行原材料核算时,不可能使用的会计科目是()。
下列关于公开发行的说法中,正确的有()。
在物的分类中,能够移动且移动后不至于损害其价值的物是()。(2009年)
“为取得理想的教学效果,在欣赏课《走进亚洲》教学的前一周,老师进行了相关的问卷调查”,这种评价方式是()
教学方法是为了完成教学任务而采取的方法。它包括教师教的方法和_______。
关于牙龈出血错误的是()。
In1993,NewYorkStateorderedstorestochargeadepositonbeverage(饮料)containers.Withinayear,consumershadreturnedmi
最新回复
(
0
)