首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式 f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ), 其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式 f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ), 其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
admin
2018-06-12
128
问题
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式
f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),
其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
选项
答案
曲线y=f(χ)在点(4,f(4))处的切线方程是 y=f(4)+f′(4)(χ-4). 由f(χ)的周期性以及f(χ)在χ=1处的可导性知f(4)=f(1),f′(4):f′(1),代入即得所求切线方程为 y=f(1)+f′(1)(χ-4). 由f(χ)的连续性可知 [*][f(1+tanχ)-4f(1-3tanχ)]=[*][26χ+g(χ)] [*]f(1)-4f(1)=0[*]f(1)=0. 再由f(χ)在χ=1处的可导性与f(1)=0可得 [*] 在①式左端中作换元tanχ=t,则有 [*] 而①式右端 [*] 从而有f′(1)=2. 于是曲线y=f(χ)在点(4,f(4))处的切线方程为y=2(χ-4),即y=2χ-8.
解析
转载请注明原文地址:https://kaotiyun.com/show/XUg4777K
0
考研数学一
相关试题推荐
设A=(1)计算行列式|A|(2)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
由a1=(1,1,0,0)T,a2=(1,0,1,1)T所生成的向量空间记作L1,由b1=(2,-1,3,3)T,b2=(0,1,-1,-1)T所生成的向量空间记作L2,试证L1=L2.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别为α,β的转置.证明:r(A)≤2.
求函数g(χ)=eχ+6aχ的零点个数,其中a<0为参数.
设z=z(χ,y)是由9χ2-54χy+90y2-6yz-z2+18=0确定的函数,(Ⅰ)求z=z(χ,y)一阶偏导数与驻点;(Ⅱ)求z=z(χ,y)的极值点和极值.
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是_______
设a,b均为常数,a>-2,a≠0,求a,b为何值时,使
设f(x,y)在全平面有连续偏导数,曲线积分∫Lf(x,y)dx+xcosydy在全平面与路径无关,且f(x,y)dx+xcosydy=t2,求f(x,y).
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=一,用切比雪夫不等式估计P{|X+Y一3|≥10}.
随机试题
以下不属于普查优越性的是()。
牙发育至根尖孔完成后即牙发育完成后所形成的牙本质是
必须与蛋白质载体结合才具有免疫原性的是
地西泮的作用不包括()。
在测定搅拌机工作时间时,由于工人上班进行准备工作,导致搅拌机延迟工作20分钟,对该时间表述正确的是()。
《出口货物报关单》的“出口退税证明联”是海关对已办理出口申报的货物所签发的证明文件。()
目前B股印花税按成交金额的4%比例计收。()
某甲与某乙订立合同,因不可抗力,甲不能履行合同义务,遂托好友某丙代为通知某乙解除合同,后某丙因忙于他事忘记了转达,合同履行期届至,某乙因某甲未履行合同遭受了损失,对某乙的损失()。
Mybrothertakes_____inthegymeveryday.
对纳税人权利保护的理解。
最新回复
(
0
)