首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
admin
2018-12-19
35
问题
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
选项
A、f’’(0)<0,g’’(0)>0。
B、f’’(0)<0,g’’(0)<0。
C、f’’(0)>0,g’’(0)>0。
D、f’’(0)>0,g’’(0)<0。
答案
A
解析
由z=f(x)g(y),得
而且
f(0)>0,g(0)<0。
当f’’(0)<0,g’’(0)>0时,B
2
一AC<0,且A>0,此时z=f(x)g(y)在点(0,0)处取得极小值。故选A。[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/Xkj4777K
0
考研数学二
相关试题推荐
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
设函数f(x)连续,且f(0)≠0,求极限
设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在z=1处取得极值
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成(如图3—7).若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为103kg/m3)
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成(如图3—7).求容器的容积;
计算积分x2y2dxdy,其中D是由直线y=2,y=0,x=-2及曲线x=-所围成的区域.
(2003年)计算不定积分
(2013年)设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
随机试题
经B型超声确诊为联体儿,原则上一经发现应及早终止妊娠。()
A.强化血浆置换B.强化血浆置换+糖皮质激素+细胞毒药物C.环磷酰胺冲击D.甲泼尼龙冲击+环磷酰胺Ⅱ型急进型肾炎的治疗首选
由于脉络膜黑色素瘤的特异性超声表现,超声对本病有较高的诊断符合率,其诊断符合率是:
男,21岁,左腰部外伤,有少量血尿及腰痛,血压80/50mmHg,脉搏110次/分,查体腰部可触及一压痛性肿块,可能为何种损伤
某女性青年,反复出现皮肤瘀点,并有鼻出血、月经过多,近来出现贫血、脾大,错误的护理措施是( )。【历年考试真题】
沥青混合料马歇尔试验制备的标准试件,直径应符合()。
关于有限责任公司和股份有限公司,下列说法中,不正确的是()
国家助学贷款的贷款期限最长不得超过()年。
某房地产开发公司(以下简称A公司)在某市商业街开发了一幢商品楼,售价4000元/m2。某甲选中了其中一套三居室,双方签订了购房合同并于2004年2月1日办理了付款交房的手续,并且约定一年之内办理所有权证书。某甲因公需要出国一年,为了方便房屋的维护
设A=有三个线性无关的特征向量.求可逆矩阵P,使得P-1AP为对角阵.
最新回复
(
0
)