首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:与基础解系等价的线性无关的向量组也是基础解系.
证明:与基础解系等价的线性无关的向量组也是基础解系.
admin
2018-06-27
66
问题
证明:与基础解系等价的线性无关的向量组也是基础解系.
选项
答案
设Ax=0的基础解系是α
1
,α
2
,…,α
t
.若β
1
,β
2
,…,β
s
线性无关,β
1
,β
2
,…,β
s
与α
1
,α
2
,…,α
t
等价. 由于β
j
(j=1,2,…,s)可以由α
1
,α
2
,…,α
t
线性表示,而α
i
(i=1,…,t)是Ax=0的解,所以β
j
(j=1,2,…,s)是Ax=0的解. 因为α
1
,α
2
,…,α
t
线性无关,秩r(α
1
,α
2
,…,α
t
)=t,又α
1
,α
2
,…,α
t
与β
1
,β
2
,…,β
s
等价,所以r(β
1
,β
2
,…,β
s
)=r(α
1
,α
2
,…,α
t
)=t.又因β
1
,β
2
,…,β
s
线性无关,故s=t. 因此β
1
,β
2
,…,β
t
是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xlk4777K
0
考研数学二
相关试题推荐
确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设三阶方阵A,B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则|B|=_______.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使;(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
设0<x1<3,xn+1=(n=1,2,…),证明数列{xn}的极限存在,并求此极限.
试证明n维列向量组α1,α2,…αn线性无关的充分必要条件是
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时,(1)β可由3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1,α
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
随机试题
关于妊娠期间阑尾的位置描述正确的是:
关于煮沸消毒法,哪种说法是错误的
PCI3分子空间几何构型及中心原子杂化类型分别为:
挤密砂桩的施工顺序应该从两侧开始,逐渐向中间推进,或者()环绕打设。
下列进度控制纠偏措施,属于管理措施的是()。
按照西方古典经济学的观点,自愿失业的类型主要包括()。
下列各项资产准备中,在以后会计期间符合转回条件予以转回时,应直接计入所有者权益类科目的是()。
2×18年,甲公司发生的相关交易或事项如下:(1)1月1日,甲公司以2500万元从乙公司购入其发行的3年期资产管理计划的优先级A类资产支持证券,该证券的年收益率为5.5%。该资产管理计划系乙公司将其所有的股权投资和应收款项作为基础资产履行的资产支持证券
关于物业服务收费原则的说法,错误的是()。
(2020年北京)某县地处黄土高原,水土流失严重。如果你是该县相关部门的工作人员,你认为采取以下哪些措施能有效治理水土流失?()①压缩农业用地,扩大林草种植面积②调整种植结构,发展棉花产业③施用石灰,降低土壤酸性④打坝淤地,
最新回复
(
0
)