首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:与基础解系等价的线性无关的向量组也是基础解系.
证明:与基础解系等价的线性无关的向量组也是基础解系.
admin
2018-06-27
48
问题
证明:与基础解系等价的线性无关的向量组也是基础解系.
选项
答案
设Ax=0的基础解系是α
1
,α
2
,…,α
t
.若β
1
,β
2
,…,β
s
线性无关,β
1
,β
2
,…,β
s
与α
1
,α
2
,…,α
t
等价. 由于β
j
(j=1,2,…,s)可以由α
1
,α
2
,…,α
t
线性表示,而α
i
(i=1,…,t)是Ax=0的解,所以β
j
(j=1,2,…,s)是Ax=0的解. 因为α
1
,α
2
,…,α
t
线性无关,秩r(α
1
,α
2
,…,α
t
)=t,又α
1
,α
2
,…,α
t
与β
1
,β
2
,…,β
s
等价,所以r(β
1
,β
2
,…,β
s
)=r(α
1
,α
2
,…,α
t
)=t.又因β
1
,β
2
,…,β
s
线性无关,故s=t. 因此β
1
,β
2
,…,β
t
是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xlk4777K
0
考研数学二
相关试题推荐
已知A,B为3阶矩阵,且满足2A-1B=B一4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若,求矩阵A.
已知向量组α1=(1,2,=1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=________.
设α为3维列向量,αT是α的转置。若,则αTα=_______.
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
设函数S(x)=∫0x|cost|dt,(1)当n为正整数,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1);(2)求.
设4维向量组α=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时α1,α2,α3,α4线性相关?当α1,α2,α3,α4性相关时,求其一个极大线性无关组,并将其余向量用该
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
设有3维列向量问λ取何值时:(1)β可由α1,α2,α3线性表示,且表达式唯一;(2)β可由α1,α2,α3线性表示,且表达式不唯一;(3)β不能由α1,α2,α3线性表示.
设A是m×n矩阵,且方程组Ax=b有解,则
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
随机试题
私放在押人员罪的主体必须是_______。
某企业外币业务采用经济业务发生当日的即期汇率作为折合汇率,按月末的即期汇率对外币类账户进行调整,该企业某月发生的部分外币经济业务如下:(1)3月1日销售一批商品,售价为22000美元,当日的即期汇率为1美元=8.5元人民币,货款尚未收到。
下列不属于扁骨的是
A.香豆素类成分B.环烯醚萜苷类成分C.蒽醌类成分D.生物碱类成分E.黄酮类成分延胡索主含
按风险影响范围分类可以将风险分为( )。
某批发企业销售甲商品,第三季度各月预计的销售量分别为1000件、1200件和1100件,企业计划每月月末商品存货量为下月预计销售量的20%。下列各项预计中,正确的有()。
“十三五”规划建议指出,要实施精准扶贫、精准脱贫、因人因地施策,提高扶贫实效。加强分类扶持贫困家庭,对有劳动能力的支持发展特色产业和转移就业,对生态特别重要和脆弱的实行生态扶贫。这样做是为了()。①改善人民生活,实现共同富裕②实现全面建成小康社会的
一、注意事项1.本试卷由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。2.第一题、第二题、第五题,所有考生都必须作答。第三题仅限考行政执法类、市(地
Youhadbetter______thatfellow.Idon’ttrusthim.
Therearetwofactorsthatdetermineanindividual’sintelligence.Thefirstisthesortofbrainheorshewasbornwith.Human
最新回复
(
0
)