首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α是线性无关的。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α是线性无关的。
admin
2018-04-08
52
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0,证明:向量组α,Aα,…,A
k-1
α是线性无关的。
选项
答案
用线性无关的定义证明。 设有常数λ
0
,λ
1
,…,λ
k-1
,使得 λ
0
α,λ
1
Aα,…,λ
k-1
A
k-1
α=0 (*) 两边左乘A
k-1
,则有 A
k-1
(λ
0
α,λ
1
Aα,…,λ
k-1
A
k-1
α)=0,即 λ
0
A
k-1
α,λ
1
A
k
α,…,λ
k-1
A
2(k-1)
α=0,上式中因A
k
α=0,可知A
k+1
α=…=A
2(k-1)
α=0,代入上式可得λ
0
A
k-1
α=0。由题设A
k-1
α≠0,所以λ
0
=0。将λ
0
=0代入(*),有λ
1
Aα+…+λ
k-1
A
k-1
α=0。两边左乘A
k-2
,则有A
k-2
(λ
1
Aα+…+λ
k-1
A
k-1
α)=0,即λ
1
A
k-1
α+…+λ
k-1
A
2k-3
α=0。同样,由A
k
α=0,A
k+1
α=…=A
2(k-1)
α=0,可得λ
1
A
k-1
α=0。由题设A
k-1
α≠0,所以λ
1
=0。类似地可证明λ
2
=…=λ
k-1
=0,因此向量组α,Aα,…,A
k-1
α是线性无关的。
解析
转载请注明原文地址:https://kaotiyun.com/show/Xlr4777K
0
考研数学一
相关试题推荐
设A,B是任意两个事件,则=__________.
设随机向量(X,Y)的概率密度f(x,y)满足f(x,y)一f(-x,y),且ρXY存在,则ρXY=()
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性相关;
已知二次型f(x1,x2,x3)=2x12+x22+x32+2tx1x2+tx2x3是正定的,则t的取值范围是____________.
已知ξ1,ξ2是方程(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
设总体X与Y都服从标准正态分布N(0,1),X1,X2,…,Xn与Y1,Y2,…,Yn是分别来自总体X和Y的两个相互独立的简单随机样本,其样本均值与方差分别为,则
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
二进制10110转换为八进制数是________。
下列选项中属于慢性肾炎临床特点的是
A.伸舌时舌体歪向一侧B.舌体紧缩,不能伸长C.舌体震颤抖动,不能自主D.舌伸出口外,不即回缩或立即收回E.舌体软弱,无力伸缩,痿废不用吐弄舌的舌象特征是
A.等容收缩期B.快速射血期C.缓慢射血期D.等容舒张期E.快速充盈期心室容积快速增大是在
男,7岁。突发寒战,高热,右膝下方剧痛3天。查体T39.8℃,P86次/分,R25次/分,BP110/60mmHg。烦躁不安,右膝关节呈半屈曲状,拒动,右小腿近端皮温高,肿胀不明显,压痛阳性。早期确诊最可靠的是
当市话电缆不可避免与1kV~10kV电力线路合杆时,二者间净距不应小于(),与1kv电力线路合杆时,净距不应小于()。
人事行政是指国家人事管理机关对()所进行的管理。
2010年,某省广电实际总收入为145.83亿元,同比增长32.07%。其中,广告收入为67.08亿元,同比增长25.88%:有线网络收入为45.38亿元,同比增长26.35%;其他收入为33.37亿元,同比增长57.3%。2010年,该省广电收
与脂肪和蛋白质相比,糖氧化时需要的氧更少,因而是人体最经济的能源。( )
【B1】【B5】
最新回复
(
0
)