首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
admin
2019-01-19
66
问题
设n阶矩阵A的伴随矩阵A
*
≠0,若ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )
选项
A、不存在。
B、仅含一个非零解向量。
C、含有两个线性无关的解向量。
D、含有三个线性无关的解向量。
答案
B
解析
由A
*
≠0可知,A
*
中至少有一个非零元素,由伴随矩阵的定义可得矩阵A中至少有一个n一1阶子式不为零,再由矩阵秩的定义有r(A)≥n一1。又因Ax=b有互不相等的解知,即其解存在且不唯一,故有r(A)
转载请注明原文地址:https://kaotiyun.com/show/XmP4777K
0
考研数学三
相关试题推荐
已知向量组(I)α1=(1,3,0,5)T,α2=(1,2,1,4)T,α3=(1,1,2,3)T与向量组(Ⅱ)β1=(1,一3,6,一1)T,β2=(a,0,6,2)T等价,求a,b的值.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(一1,一1,1,a)T,α3=(2,a,一3,一5)T,α4=(1,一1,a,5)T与齐次方程组Ax=0的基础解系等价,求Ax=0的
设数列{an}=0满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2),S(x)是幂级数anxn的和函数.(1)证明S"(x)一S(x)=0;(2)求S(x)的表达式.
设三阶实对称矩阵A的特征值是1,2,3.A的属于特征值1,2的特征向量分别是α1=[一1,一1,1]T,α2=[1,一2,一1]T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设函数z=f(x,y)具有二阶连续偏导数,且≠0,试证明:对任意的常数c,f(x,y)=c为一直线的充分必要条件是(f’y)2.f"xx一2f’x.f’y.f"xy+(f’x)2.f’yy=0.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2-4x1x3+8x2x3的矩阵A=_______,规范形是______.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
已知二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2—2x1x3+4x2x3.当λ满足什么条件时f(x1,x2,x3)正定?
随机试题
下列对领导者素质重要性的表述,错误的是【】
河内凶,则移其民于河东。凶:
金刚烷胺与下列药联用.应特别注意与哪种药联用为禁忌
中年男性,酗酒后8小时出现中上腹疼痛,放射至两侧腰部。伴恶心、呕吐。体检:腹部有压痛、肌紧张及两侧腰腹部出现蓝棕色斑,血压75/55mmHg,脉搏110次/分。最可能的诊断是
可撤销合同的确认应该是由( )确认。
如果某单项资产的系统风险大于整个市场投资组合的风险,则可以判定该项资产的B值()。
道德与法律的联系存在于()。
近年来,我国的房价一路飙升。2007年8月国务院决定通过扩大廉租住房制度来解决城市1000万户低收入家庭的住房问题。为实现这一目标,需要政府发放租赁补贴或提供廉租住房;而要建设住房,则需要土地和资金。一位记者以《低收入家庭跨人廉租房时代》为题进行报道,这表
办张健身卡,请一名私人教练,这不再仅是成年人的时尚。“儿童健身”训练也悄然兴起。时尚的爸妈为孩子请个“私人健身教练”,量身定制健身方案。但是儿童私人健身教练并没有专业从业资格,大都从成人教练“转岗”,教学内容没有统一标准。有些教练使用不成熟的教学方法,反而
在进行某学校教务管理系统的数据库设计时,数据库设计人员设计了如下几个关系模式:系(系号,系名),系号为主码学生(学号,姓名,所在系号),学号为主码课程(课程号,课程名,开课系号),课程号为主码选课(学号,课程号,选课时间),
最新回复
(
0
)