首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
admin
2018-11-23
23
问题
A是2阶矩阵,2维列向量α
1
,α
2
线性无关,Aα
1
=α
1
+α
2
,Aα
2
=4α
1
+α
2
.求A的特征值和|A|.
选项
答案
先找A的特征向量.由于α
1
,α
2
线性无关,每个2维向量都可以用它们线性表示.于是A的特征向量应是α
1
,α
2
的非零线性组合c
1
α
1
+c
2
α
2
,由于从条件看出α不是特征向量,c
3
不能为0,不妨将其定为1,即设η=cα
1
+α
2
是A的特征向量,特征值为λ,则Aη=λη, Aη=A(cα
1
+α
2
)=c(α
1
+α
2
)+4α
1
+α
2
=(c+4)α
1
+(c+1)α
2
, 则(c+4)α
1
+(c+1)α
2
=λ(cα
1
+α), 得c+4=λc,c+1=λ.解得c=2或-2,对应的特征值λ分别为3,-1.|A|=-3.
解析
转载请注明原文地址:https://kaotiyun.com/show/XnM4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=________.
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是______。
设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=________.
设A=,B是3阶非0矩阵,且AB=0,则a=__________.
已知a,b,c是单位向量,且满足a+b+c=0,则a.b+b.c+c.a=_____.
(94年)已知随机变量X~N(1,32),Y~N(0,42),而(X,Y)服从二维正态分布且X与Y的相关系数(1)求EZ和DZ,(2)求X与Z的相关系数ρXZ。(3)问X与Z是否相互独立?为什么?
设A,B为3阶相似非零矩阵,矩阵A=(aij)满足aij=Aij(i,j=1,2,3),Aij为aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,行列式|AB-A*+B-E|=______.
随机试题
泻下药中有效成分不溶于水,宜人丸散的约是()(1998年第29题)
下列数字中属于日本忌讳数字的有()。
中世纪的自治城市在意大利的典型形态是()
颅内生殖细胞瘤最常见于哪个部位
不符合病室交班报告要求的是
下牙槽神经
有一高速公路建设项目,项目所在地域属黄河阶地,分布在黄河南岸与黄土丘陵塬地之间,表面多为砂土,结构疏松。该项目沿线经过地区多数为耕地及经济林地,另有部分荒坡地,公路边沿地带有一湿地自然保护区,沿线存在居民点与学校。根据以上内容,回答以下问题。
根据个人所得税的规定,个人独资企业的投资者及其家属发生的生活费用与企业生产经营费用混合在一起且难以划分的,其正确的账务处理是()。
从人类开始有组织的活动开始,就一直实施着各种类型和规模的项目,只是人们并未意识到项目管理对社会进步的意义。因此,仅凭个人的智慧、才能和经验去完成任务,根本谈不上科学性和系统性。直到20世纪初,项目管理还没有先进的工具和方法、科学的管理手段、明确的操作规程和
在解应用题时,老师总是一再强调要读懂题目,必要时可以画示意图。他这样做的目的是为了让学生()。
最新回复
(
0
)