首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03年)已知齐次线性方程组 其中≠0.试讨论a1,a2,…,an和b满足何种关系时, (1)方程组仅有零解; (2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
(03年)已知齐次线性方程组 其中≠0.试讨论a1,a2,…,an和b满足何种关系时, (1)方程组仅有零解; (2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
admin
2021-01-25
113
问题
(03年)已知齐次线性方程组
其中
≠0.试讨论a
1
,a
2
,…,a
n
和b满足何种关系时,
(1)方程组仅有零解;
(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
选项
答案
方程组的系数行列式 [*] 为一“行和”相等行列式,将各列加至第1列,然后提取第1列的公因子(b+[*]a
i
),再将第1列的(-a
i
)倍加至第i列(i=2,…,n),就将行列式化成了下三角行列式: [*] (1)当|A|≠0,即b≠0且b+[*]≠0时,方程组仅有零解; (2)当b=0时,原方程组的同解方程组为 a
1
χ
1
+a
2
χ
2
+…+a
n
χ
n
=0, 由[*]≠0知a
1
,a
2
,…,a
n
不全为零,不妨设a
1
≠0,则得原方程组的用自由未知量表示的通解为 [*] 由此得方程组的一个基础解系为 [*] 当b=-[*]时,有b≠0,对原方程组的系数矩阵A作初等行变换:将第1行的(-1)倍分别加至第2,3,…,n行,得 [*] 用[*]乘第i行(i=2,3,…,n),得 [*] 将第i行的(-a
i
)倍加至第1行(i=2,3,…,n),并利用b+[*]=0,得 [*] 因此得原方程组的用自由未知量表示的通解为 χ
2
=χ
1
,χ
3
=χ
1
,…,χ
n
=χ
1
,(χ
1
任意) 令χ
1
=1,则得原方程组的一个基础解系为 α=(1,1,…,1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xqx4777K
0
考研数学三
相关试题推荐
设f(x)=D={(x,y)|一∞<x<+∞,一∞<y<+∞,则f(y)f(x+y)dxdy=___________.
已知微分方程作变换μ=x2+y2,ω=lnz-(x+y)确定函数ω=ω(μ,ν),求经过变换后原方程化成的关于ω,μ,ν的微分方程的形式.
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
求级数的收敛域及和函数.
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2),且P{X=x2}=,P{Y=y1|X=x2}=,P{X=x1|Y=y1}=,试求:(Ⅰ)二维随机变量(X,Y)的联合概率分布;(Ⅱ)条件概率P{Y=yj|X=x1},j=1,2.
设f(χ)在χ=χ0的某领域内存在二阶导数,且=a>0,则存在点(χ0,f(χ0))的左、右侧邻域U-与U+,使得().
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)(1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ(2)利用(1)的结论计算定积分|si
设总体X~N(0,4),X1,X2,X3为来自总体X的简单随机样本,令,,若,则a=,n=.
设z=z(x,y)是由9x2一54x),+90y2一6yz一z2+18=0确定的函数,求z=z(x,y)的极值点和极值.
微分方程y’=(1一y2)Tanx满足y(0)=2的特解为y=___________.
随机试题
A.渗透和滤过B.主动转运C.入胞作用D.单纯扩散氨基酸和葡萄糖在小肠的吸收机制为
A.手阳明大肠经B.足阳明胃经C.足太阳膀胱经D.手太阳小肠经E.足少阳胆经起于目内眦的经脉是
市政公用工程施工组织设计必须经( )批准。
甲公司是一家生产和销售钢铁的A股上市公司,其母公司为XYZ集团公司,甲公司为实现规模化经营、提升市场竞争力,多次通过资本市场融资成功进行了同行业并购,迅速扩大和提高了公司的生产能力和技术创新能力,奠定了公司在钢铁行业的地位,实现了跨越式发展,在一系列并购过
根据《旅行社条例实施细则》,旅行社在银行存人质量保证金的,应当设立独立账户,存期由旅行社确定,但不得少于()。
昨天冬冬和妞妞都病了,病症也类似。平日两人每天下午都在一起玩,因此,两人可能患的是同一种病,冬冬的病症有点像链球菌感染,但他患的肯定不是这种病。因此,妞妞患的病也肯定不是链球菌感染。以下哪项最为准确地概括了上述论证中的漏洞?
设无向图G=(V,E)和G’=(V’,E’),如果G’是G的生成树,则下面说法中错误的是()。
被弗洛伊德描述为俄狄浦斯情节出现的阶段是在()。
Mostpeopleseeksomedegreeofinnerpeaceatwork,anditcanbedifficulttoobtain.Workisstressful,andmostofustendt
【S1】【S10】
最新回复
(
0
)