首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (1)在(a,b)内,g(x)≠0; (2)在(a,b)内至少存在一点ξ,使.
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (1)在(a,b)内,g(x)≠0; (2)在(a,b)内至少存在一点ξ,使.
admin
2021-11-09
35
问题
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
(1)在(a,b)内,g(x)≠0;
(2)在(a,b)内至少存在一点ξ,使
.
选项
答案
(1)设c∈(a,b),g(C)=0. 由g(a)=g(C)=g(b)=0,g(x)在[a,c],[c,b]上两次运用罗尔定理可得g’(ξ
1
)=g’(ξ
2
)=0, 其中ξ
1
∈(a,c),ξ
2
∈(c,b),对g’(x)在[ξ
1
,ξ
2
]上运用罗尔定理,可得g"(ξ
3
)=0. 因已知g"(x)≠0,故g(C)≠0. (2)F(x)=f(x)g’(x)一f’(x)g(x)在[a,b]上运用罗尔定理, F(a)=0,F(b)=0. 故[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/Xuy4777K
0
考研数学二
相关试题推荐
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=_______.
求下列极限:
设f(χ)=,求f(χ)的间断点并判断其类型.
证明:连续函数取绝对值后函数仍保持连续性,并举例说明可导函数取绝对值不一定保持可导性.
若f(χ)在χ=0的某邻域内二阶连续可导,且=1,则下列正确的是().
设函数f(x)在x=1处的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性。
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:.
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
随机试题
“不愤不启,不悱不发”,这句话反映的是
议会制国家的内阁首相是______。
下列抗原中属非TD抗原的是
龋病期间不形成或形成很少修复性牙本质的是
质量为m的物体自高H处水平抛出,运动中受到与速度一次方成正比的空气阻力FR作用,FR=一kmv,k为常数。则其运动微分方程为()。
关于建筑火灾风险评估的评估内容,下列说法不正确的是()。
选出下面注音、声调全部都正确的一组:
Intoday’srapidlychangingeconomy,opportunities______forthosewhoaremotivatedanddedicatedtoachievingtheircareergoal
Afour-yearstudybysociologistsatTheUniversityofManchesterhasfoundthatwomenaremuchlikelythanmento【M1】______mak
Google’sGoogleproblemGoogleiskillingGoogleReader.UseofGoogleReader,atool,bytheway,forreadingonlineconten
最新回复
(
0
)