设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明: (1)在(a,b)内,g(x)≠0; (2)在(a,b)内至少存在一点ξ,使.

admin2021-11-09  35

问题 设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:
    (1)在(a,b)内,g(x)≠0;
    (2)在(a,b)内至少存在一点ξ,使

选项

答案(1)设c∈(a,b),g(C)=0. 由g(a)=g(C)=g(b)=0,g(x)在[a,c],[c,b]上两次运用罗尔定理可得g’(ξ1)=g’(ξ2)=0, 其中ξ1∈(a,c),ξ2∈(c,b),对g’(x)在[ξ1,ξ2]上运用罗尔定理,可得g"(ξ3)=0. 因已知g"(x)≠0,故g(C)≠0. (2)F(x)=f(x)g’(x)一f’(x)g(x)在[a,b]上运用罗尔定理, F(a)=0,F(b)=0. 故[*].

解析
转载请注明原文地址:https://kaotiyun.com/show/Xuy4777K
0

最新回复(0)