首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1]有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1]有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)
admin
2022-09-05
32
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1]有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1)
选项
答案
证法一 设F(x)=∫
0
x
g(t)f’(t)dt+∫
0
1
f(x)g’(x)dx-f(x)g(1),x∈[0,1] 则F(x)在[0,1]上的导数连续性,并且 F’(x)=g(x)f’(x)-f’(x)g(1)=f’(x)[g(x)-g(1)], 由于X∈[0,1]时,f(x)≥0, g’(x)≥0,因此F’(x)≤0,即F(x)在[0.1]上单调递减. 注意到 F(1)=∫
0
1
g(t)f’(t)dt+∫
0
1
f(t)g’(t)dt-f(1)g(1) 而∫
0
1
g(t)f’(t)dt=∫
0
1
g(t)df(t)=g(t)f(t)|
0
1
-∫
0
1
f(t)g’(t)dt =f(1)g(1)-∫
0
1
f(t)g’(t)dt 故F(1)=0 因此x∈[0,1]时,F(x)≥0由此可得对任何a∈[0,1]时有 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1) 证法二 ∫
0
a
g(x)f’(x)dx=g(x)f(x)|
0
a
-∫
0
a
f(x)g’(x)dx =f(a)g(a)-∫
0
a
f(x)g’(x)dx ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx=f(a)g(a)-∫
0
a
f(x)g’(x)dx+∫
0
1
f(x)g’(x)dx =f(a)g(a)+∫
a
1
f(x)g’(x)dx 由于x∈[0,1]时,f’(x)≥0,因此f(x)在[0,1]内单调递增 f(x)≥f(a),x∈[a,1] 又由于x∈[0,1]时,g’(x)≥0因此 f(x)g’(x)≥f(a)g’(x),x∈[a,1] ∫
a
1
f(x)g’(x)dx≥∫
a
1
f(a)g’(x)dx=f(a)[g(1)-g(a)] 从而∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(a)+f(a)[g(1)-g(a)]=f(a)g(1)
解析
转载请注明原文地址:https://kaotiyun.com/show/XwR4777K
0
考研数学三
相关试题推荐
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明dxdy≥(b-a)2.
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且f’(x)=M.证明:f’(x0)=M.
交换积分次序并计算dy(a>0).
设A为n阶矩阵,k为常数,则(kA)*等于().
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得成立.
求下列不定积分:
随机试题
影响领导风格有效性的主要工作环境因素包括_____、_____、_____。
A.合成尿素B.合成丙氨酸C.合成非必需氨基酸D.合成谷氨酰胺E.合成必需氨基酸体内氨的主要代谢去路是
感觉的特异投射系统能形成特定感觉,其主要的原因是
《公开募集证券投资基金运作管理办法》生效的时间是()。
下列句子中没有语病的一项是()。
这种简单化的发展难免带来_______风险。城市规划目光短浅,建设只求速度重_______,设施管理维护职责混乱。我们看到一座座摩天楼、商业区、产业园犹如雨后春笋般出现,而这些_______的奢华景观却经不起一场暴雨的考验。依次填入画横线部分最恰当的一项
市场经济发达国家的实践充分表明,假冒伪劣产品的泛滥程度与市场经济的发展水平呈负相关变化。市场经济内在的竞争机制本身就倡导以公平与质量取胜,只有符合社会需求的高质量商品才能得到社会的认可。由此可见:
D
Quantumwillstillbeonairasthelastprogramsofitarestillinthemakingandaretobeshownasscheduled.Jarvisreveal
A、BeijingEducationalPress.B、LiaoningEducationalPress.C、LondonGuinnessWorldRecord.D、IrelandGuinnessWorldRecord.C
最新回复
(
0
)