首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则( )正确.
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则( )正确.
admin
2019-08-12
49
问题
设线性方程组AX=β有3个不同的解γ
1
,γ
2
,γ
3
,r(A)=n-2,n是未知数个数,则( )正确.
选项
A、对任何数c
1
,c
2
,c
3
,c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解;
B、2γ
1
-3γ
2
+γ
3
是导出组AX=0的解;
C、γ
1
,γ
2
,γ
3
线性相关;
D、γ
1
-γ
2
,γ
2
-γ
3
是AX=0的基础解系.
答案
B
解析
Aγ
i
=β,因此A(γ
1
-3γ
2
+γ
3
)=2β-3β+β=0,即2γ
1
-3γ
2
+γ
3
是AX=0的解,(B)正确.
c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解
c
1
+c
2
+c
3
=1,(A)缺少此条件.
当r(A)=n-2时,AX=0的基础解系包含两个解,此时AX=β存在3个线性无关的解,因此不能断定γ
1
,γ
2
,γ
3
线性相关.(C)不成立.
γ
1
-γ
2
,γ
2
-γ
3
都是AX=0的解,但从条件得不出它们线性无关,因此(D)不成立.
转载请注明原文地址:https://kaotiyun.com/show/Y4N4777K
0
考研数学二
相关试题推荐
顶角为60°,底圆半径为口的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n≥2),证明:当n为偶数且f(n)(x0)>0时,f(x)在x0处取得极小值.
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=______________.
求二重积分其中D是由曲线直线y=2,y=x所围成的平面区域.
设B是3阶非零矩阵,且AB=O,则Ax=0的通解是______________.
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+0(χ3).
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0x(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值
设f(x)连续可导,f(0)=0,f’(0)≠0,F(x)=(x2-t2)f(t)dt,且当x→0时,F’(x)与xk为同阶无穷小,求k.
设矩阵A=(aij)3×3满足A*=AT,a11,a12,a13为3个相等的正数,则它们为
随机试题
下列关于维拉帕米描述错误的是
三度房室传导阻滞,心室率为40次/分,伴有阿—斯综合征发作,首选的治疗方法是
A.心脏毒性B.骨髓抑制C.肝损伤D.肺纤维化E.腹泻米托葸醌可引起的主要不良反应是()。
1.背景某施工单位准备承接一新建机场目视助航工程,在投标书中写了工地施工现场管理制度、施工现场材料管理制度、机械设备现场管理制度、消防保卫管理制度等四项管理制度。2.问题分别写出四项管理制度的内容。
接受进出口货物收发货人的委托,以进出口货物收发货人的名义,向海关办理代理报关业务,从事报关服务的境内企业法人是报关企业。()
公司分立前的债务由分立后的公司承担连带责任,但公司在分立前与债权人就债务清偿达成的书面协议另有约定的除外。( )
上市公司董事会通过股票股利分配方案时,财会部门应将拟分配的股票股利确认为负债。()
根据以下资料,回答下列题。2010年,全国国有建设用地土地供应总量42.8万公顷,比上年增长18.4%。其中,工矿仓储用地15.3万公顷,增长7.9%;商服用地3.9万公顷,增长40.4%;住宅用地11.4万公顷,增长40.3%;基础设施等其他用
在考生文件夹下有一个工程文件sjt5.vbp,相应的窗体文件为sjt5.frm,此外还有一个名为datain.txt的文本文件,其内容如下:324376582812985731425364758
在满足实体完整性约束的条件下
最新回复
(
0
)