首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ2=2是A的特征值, 对应特征向量为(-1,0,1)T. (1)求A的其他特征值与特征向量; (2)求A.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ2=2是A的特征值, 对应特征向量为(-1,0,1)T. (1)求A的其他特征值与特征向量; (2)求A.
admin
2018-01-23
55
问题
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ
2
=2是A的特征值,
对应特征向量为(-1,0,1)
T
.
(1)求A的其他特征值与特征向量;
(2)求A.
选项
答案
(1)因为A的每行元素之和为5,所以有 [*]即A有特征值λ
2
=5,对应的特征向量为[*] 又因为AX=0有非零解,所以r(A)<3,从而A有特征值0,设特征值0对应的特征向量 为[*],根据不同特征值对应的特征向量正交得[*]解得特征值0对应的 特征向量为[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/YNX4777K
0
考研数学三
相关试题推荐
设A是三节矩阵,P是三阶可逆矩阵,已知P-1AP=,且Aα1=α1,Aα2=α2,Aα3=0,则p是().
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
计算二重积分I=dy.
已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P(λ<X<λ+a)(a>0)的值().
将外形相同的球分别装入三个盒子中,第一个盒子装入5个红球和3个黑球,第二个盒子装入3个黑球和2个红球,第3个盒子中装入4个黑球和2个红球.先在第一个盒子中任取一球,若取到黑球,则在第二个盒子中任取两球,若取到红球,则在第三个盒子中任取两球,求第二次取到的两
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.(1)求A的全部特征值;(2)A是否可对角化?
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为__________.
若向量组α1=(1,1,λ)T,α2=(1,λ,1)T,α3=(λ,1,1)T线性相关,则λ=_______.
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
随机试题
—Haveyoumovedintothenewhouse?—Notyet,therooms________.
补体的激活途径有______、______、______。
铸造侧腭杆与余留牙的关系应为
抗痨化疗方案的两个阶段包括)
在护患交谈中,移情是指护士
会计职业道德具有广泛的社会性。()
甲于20l8年3月20日将小件包裹寄存乙处保管。3月22日,该包裹被盗。3月27日,甲取包裹时得知包裹被盗。甲要求乙赔偿损失的诉讼时效期间届满日是()。
春秋时期,周天子的地位一落千丈,诸侯王不再听命于周王,一些强大的诸侯趁机发动兼并战争。强迫其他各国承认其霸主地位。管仲辅佐____打着“尊王攘夷”旗号,使其“九合诸侯,一匡天下”,成为春秋时期第一个霸主。
在一定程度上,技术的飞速发展与国家之间的竞争有着_______的关系。二战抑或冷战时期,某些领域尤其是军事领域的科学突破即是例证,以登月为标志的航天科技的突飞猛进只是其中之一。但如果将今天的进步缓慢归因于竞争不充分,甚至怀念那样一个阴暗、极端、意识狭隘的时
设一棵完全二叉树共有700个结点,则在该二叉树中有______个叶子结点。
最新回复
(
0
)