首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶对称矩阵,下列结论不正确的是( ).
设A,B为n阶对称矩阵,下列结论不正确的是( ).
admin
2018-04-15
65
问题
设A,B为n阶对称矩阵,下列结论不正确的是( ).
选项
A、AB为对称矩阵
B、设A,B可逆,则A
-1
+B
-1
为对称矩阵
C、A+B为对称矩阵
D、kA为对称矩阵
答案
A
解析
由(A+B)
T
=A
T
+B
T
=A+B,得A+B为对称矩阵;由(A
-1
+B
-1
)
T
=(A
-1
)
T
+(B
-1
)
T
=A
-1
+B
-1
,得A
-1
+B
-1
为对称矩阵;由(kA)
T
=kA
T
=kA,得kA为对称矩阵,选(A).
转载请注明原文地址:https://kaotiyun.com/show/YSX4777K
0
考研数学三
相关试题推荐
设矩阵有一个特征值是3.判断矩阵A2是否为正定矩阵,并证明你的结论.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明:在(a,6)内存在一点ξ,使
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明:在(a,b)内f(x)>0;
设y=f(x)在[0,+∞]上有连续的导数,且fˊ(x)>0,f(0)=0,f(x)的值域也是[0,+∞].又设x=φ(y)是y=f(x)的反函数,常数a>0,b>0,证明:,当且仅当a=φ(b)时上式取等号.
下列矩阵中,正定矩阵是()
已知A是n阶实对称矩阵,满足A2一3A+2E=0,且B=A2一2A+3E.(Ⅰ)求B-1;(Ⅱ)证明:B正定.
设a为正常数,f(x)=xea—aex—x+a. 证明:当z>a时f(x)<0.
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥6,若A~μE是正定阵,则参数μ应满足()
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1.(Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
设f(x)在[0,1]上可导且满足f(0)=.证明:至少存在一点ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
随机试题
椎间盘在脊柱的生物力学体系中的主要作用包括()。
下列哪项是抢救高血钾病人时,采取的首要措施()
某小型体育馆屋盖平面尺寸为30m×50m,最经济合理的屋盖结构是()。
给儿童发药时,要细心核对姓名、药物的剂型、药量和用法。()
甲有证据证明乙在履行合同中故意诈骗其钱财,涉嫌犯罪,但向公安机关报案后,公安机关作出了不予立案决定,对此,甲有权直接向人民法院起诉。()
香蕉水作为油性涂料、油漆等建筑材料的溶剂和稀释剂,常用于家庭和办公室装修,下列关于香蕉水的说法正确的是:()
Writeanessaybasedonthefollowingchart,inyourwriting,youshould1)interpretthechart,and2)giveyourcomments.
MostradioandtelevisionstationsintheUnitedStatesarecommercialstations,【C1】______istosay,theyearntheirmoneyfrom【
WheretheWildThingsare"Ididn’tsetouttomakeachildren’smovie,"saysBeingJohnMalkovichdirectorSpikeJonze,"I
Forauthorsofself-helpguides,nohumanproblemistoogreatortoosmall.Wanttobecomefitter,richerorhappierin2015?T
最新回复
(
0
)