设f(x)在[1,+∞)内可导,f’(x)<0且=a>0,令an=-∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).

admin2020-03-10  30

问题 设f(x)在[1,+∞)内可导,f’(x)<0且=a>0,令an=-∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).

选项

答案因为f’(x)<0,所以f(x)单调减少.又因为an+1-an=f(n+1)-∫nn+1f(x)dx=f(n+1)-f(ξ)≤0(ξ∈[n,n+1]).所以{an}单调减少.因为an=[*][f(k)-f(x)]dx+f(n),而∫kk+1[f(k)-f(x)]dx≥0(k=1,2,…,n-1)且 [*] 所以存在X>0,当x>X时,f(x)>0.由f(x)单调递减得f(x)>0(x∈[1,+∞)),故an≥f(n)>0,所以 [*] 存在.由an=f(1)+[f(2)-∫12f(x)dx]+…+[f(n)-∫n-1nf(x)dx],而f(k)-∫k-1kf(x)dx≤0(k=2,3,…,n),所以an≤f(1),从而0≤[*]≤f(1).

解析
转载请注明原文地址:https://kaotiyun.com/show/YVD4777K
0

最新回复(0)