首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题: ①设f’(x)与f“(x)均存在,则f(x)在x=x0处必连续; ②设f’-(x0)与f’﹢(x0)均存在,则f(x)在x=x0处必连续; ③设f(-0)与f(﹢0)均存在,则f(x)在x=x0处必连续; ④设f’(x)与f’中至少有一个不存在
下列命题: ①设f’(x)与f“(x)均存在,则f(x)在x=x0处必连续; ②设f’-(x0)与f’﹢(x0)均存在,则f(x)在x=x0处必连续; ③设f(-0)与f(﹢0)均存在,则f(x)在x=x0处必连续; ④设f’(x)与f’中至少有一个不存在
admin
2020-12-10
52
问题
下列命题:
①设
f
’
(x)与
f
“
(x)均存在,则f(x)在x=x
0
处必连续;
②设f
’
-
(x
0
)与f
’
﹢
(x
0
)均存在,则f(x)在x=x
0
处必连续;
③设f(
-
0
)与f(
﹢
0
)均存在,则f(x)在x=x
0
处必连续;
④设
f
’
(x)与
f
’
中至少有一个不存在,则f(x)在x=x
0
处必不可导.
正确的个数是 ( )
选项
A、1.
B、2.
C、3.
D、4.
答案
A
解析
f
’
-
(x
0
)存在,即f(x)在x=x
0
处左导数存在,推知f(x)在x=x
0
处左连续;f
’
-
(x
0
)存在,
推知f(x)在x=x
0
处右连续.故f(x)x=x
0
处连续,②正确.
①与③都不正确,因为这两种情形,f(x
0
)可能没有定义.
④也不正确,反例:
不存在,但f
’
(0)存在.
转载请注明原文地址:https://kaotiyun.com/show/YX84777K
0
考研数学二
相关试题推荐
求微分方程y"+y’-2y=xex+sin2x的通解。
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
设u=f(x2+y2,z)其中f二阶连续可偏导,且函数z=z(x,y)由xy+ex=xz确定,求.
[*]
解微分方程y2dx一(y2+2xy—x)dy=0.
适当选取函数φ(x),作变量代换y=φ(x)u,将y关于x的微分方程化为u关于x的二阶常系数线性齐次微分方程,求φ(x)及λ并求原方程的通解.
求累次积分
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex。求曲线y=f(x3)|f(-t2)dt的拐点。
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
随机试题
简述现代管理理论各种理论学派的基本原理和主要观点。
炎症局部的临床表现是什么?如何解释?
Treesshouldonlybepruned(修剪)whenthereisagoodandclearreasonfordoingsoand,fortunately,thenumberofsuchreasons
空气细菌菌落总数检查,将采样后的平板于30~35℃培养24小时后观察结果,求出
艾滋病患者机会性感染最常见的疾病是()
LawofOnePrice
下列哪一条不属于数据库设计的任务
WhatdidKarlthecriminalmentionedinthecasehaveasherfrontofthedrugring?
A、Candy.B、Cigarettes.C、Toys.D、Books.B
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.【C1】theturnofthelastcenturywhenjazz(爵士乐)wasborn,A
最新回复
(
0
)