首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f"(ξ)=一4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f"(ξ)=一4.
admin
2019-06-06
51
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f"(ξ)=一4.
选项
答案
按题设可把函数f(x)在x=1处展开为泰勒公式,得 [*] 这样一来,若f"(ξ
1
)=f"(ξ
2
),则f"(ξ)=f"(ξ
2
)=一4.从而这时ξ可取为ξ
1
或ξ
2
.若f"(ξ
1
)≠f"(ξ
2
),这时[*][f"(ξ
1
)+f"(ξ
2
)]=一4就是f"(ξ
1
)与f"(ξ
2
)的一个中间值,按导函数的中间值定理(又称为达布定理)即知存在ξ∈(ξ
1
,ξ
2
)[*](0,2)使得f"(ξ)=一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/YqV4777K
0
考研数学二
相关试题推荐
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3求|A*+2E|.
x=φ(y)是y=f(x)的反函数,f(x)可导,且,f(0)=3,求φ"(3).
设f(χ)在[0.1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得f〞(ξ)=f′(ξ).
如图1—5—1,C1和C2分别是y=(1+ex)和y=ex的图象,过点(0,1)的曲线C3是一单调增函数的图象。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为
设f(x,y,z)=ex+y2z,其中z=z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则fx’(0,1,一1)=_________。
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D,求(I)D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)a的值,使V(a)为最大。
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式。
判断下列结论是否正确?为什么?(Ⅰ)若函数f(χ),g(χ)均在χ0处可导,且f(χ0)=g(χ0),则f′(χ0)=g′(χ0);(Ⅱ)若χ∈(χ0-δ,χ0+δ),χ≠χ0时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ0处有相同
随机试题
Helpingothersisahabit,_____________youcanlearnevenatanearlyage.
孟德斯鸠在《论法的精神》中曾阐述过这个问题:在封建社会,社会的主要动力是荣宠。也就是说,在那时候,荣宠和身份权利,决定了一个人社会地位的高低,一个开国世袭的落魄男爵要比一个腰缠万贯的商人有地位得多。而在当代社会,社会地位变得多元化起来,可仍然逃不出三个可以
某病人有如下冠心痛危险因素,通过护理可以纠正的危险因素是
前牙在正中殆和前伸颌均有早接触,应磨改
藏与象之间的关系哪项是错误的
一、注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分150分。2.监考人员宣布考试开始时,你才可以开始答题。3.监考人员宣布考试结束时,考生
人类非物质文化遗产的传承,对保护世界文化的多样性,确保民族性和世代相传具有重要意义。以下不属于我国被列入“人类口头和非物质文化遗产”名录的一项是()。
若某线性表中最常用的操作是在最后一个结点之后插入一个结点和删除第一个结点,则下面最节省运算时间的存储方式是()。
A、Heleftbytrain.B、Hemissedhisflight.C、Hedidn’tgetataxi.D、Hetooktheeleveno’clockflight.B
每个人一生中都该有个志向,否则他的精力便会浪费掉。每个青年人都力求成为一个有成就的人物。【T1】一个青年人只期望富有或只专心于求得权力与名望是不明智的。(nor;indulgein)一个青年人希望做个有成就者,结果常常会实现。狄斯拉里(Disr
最新回复
(
0
)