首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是正定矩阵,证明|A+E|>1.
已知A是正定矩阵,证明|A+E|>1.
admin
2018-11-23
50
问题
已知A是正定矩阵,证明|A+E|>1.
选项
答案
设A的特征值为λ
1
,λ
2
,…,λ
n
,则A+E的特征值为λ
1
+1,λ
2
+1,…,λ
n
+1.因为A正定,所以λ
i
>0,λ
i
>1(i=1,2,…,n).于是 |A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z2M4777K
0
考研数学一
相关试题推荐
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn)
设A、B均为n阶方阵,且满足AB=A+B,证明A—E可逆,并求(A—E)-1.
若向量组α,β,γ线性无关;α,β,δ线性相关,则
方程f(x)==0的全部根是_____.
设三阶实对称矩阵的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
设二维随机变量(X,Y)的分布函数为:一∞<x<+∞,一∞<y<+∞.求:(1)常数A,B,C;(2)(X,Y)的概率密度f(x,y);(3)关于X和Y的边缘密度fX(x)和fY(y).
(11年)设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是
(04年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
(09年)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
马克思说:“立法者应该把自己看作是一个自然科学家,他不是在制造法律,不是在发明法律,而是在表述法律,……如果一个立法者用自己的臆想来代替事物的本质,那么我们就应该责备他极端任性。”下列说法不违背这句话的原意的有()。
A.异烟肼B.链霉素C.利福平D.乙胺丁醇E.对氨基水杨酸用药期间需定期检查视力、视野的药物
二尖瓣狭窄患者可听到的最重要的杂音是()
过滤器结构形式有()。
乙公司属于以境内外全部生产经营所得认定为高新技术企业的公司,在2015年初汇算清缴2014年度企业所得税时,对有关收支项目进行纳税调整后,自行将全年会计利润500万元调整为全年应纳税所得额600万元,已缴纳所得税税额为90万元。会计师事务所检查时,发现乙公
奥美拉唑治疗消化性溃疡的机制是()。
看《背影》的板书,回答问题。问题:请结合对本篇课文的了解,对该板书设计进行具体评价。
皮亚杰提出儿童的认知发展要经过以下几个阶段()。
下列程序输出的结果是()。#include<stdio.h>fun1(chara,charb){charc;c=a;a=b;b=c;}fun2(char*a,charb){charc;c=*a
ATorontomanisofferingafreeround-the-worldairtickettotherightwoman.But【C1】________apply.YoumustbenamedElizabet
最新回复
(
0
)