首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-02-23
120
问题
已知平面上三条直线的方程为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. [*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点<=>r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=-(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) =[*](a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a-b)
2
+(b-c)
2
+(c-a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到 r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的A倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/Z4j4777K
0
考研数学二
相关试题推荐
设A,B皆为n阶矩阵,则下列结论正确的是().
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
设0<χ<,证明.
设A是n阶矩阵,证明存在非0的n阶矩阵B使AB=0的充分必要条件是|A|=0.
设f(χ)在(-∞,+∞)连续,存在极限f(χ)=A及f(χ)=B.证明:(Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(χ)在(-∞,+∞)有界.
曲线y=lnχ上与直线χ+y=1垂直的切线方程为_______.
设A=,B=(A+kE)2.(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
造一容积为V0的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
随机试题
对不真实、不合法的原始凭证,会计人员有权不予接受,对记载不准确、不完整的原始凭证,会计人员有权要求其重填。
可疑菌痢者哪项检查是不正确的
骨盆出口横径是
厂(场)址方案比选的主要内容有()。
在规定条件下,材料或制品加热到释放出气体瞬间着火并出现火焰的最低温度叫做()。它是衡量物质火灾危险性的重要参数。
企业预收账款业务不多,可以不设置“预收账款”科目。企业预收客户货款时,直接将其计入“应付账款”科目的贷方。()
为了了解某地区高一新学生的身体发育情况,抽查了该地区100名年龄为17.5岁一18岁的男生体重(kg),得到频率分布直方图如下,根据此图可得这100名学生中体重大于等于56.5小于64.5的学生人数是()
道教是以“道”为最高信仰的具有中华民族文化特色的本土宗教,道教与中华民族同呼吸、共命运,下列关于我国道教的产生和历史说法正确的是:
下列各项业务中,应计入“坏账准备”科目贷方的是()。
1957年2月,毛泽东在扩大的最高国务会议上发表《关于正确处理人民内部矛盾的问题》的讲话,强调指出()
最新回复
(
0
)