首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且Aα1=α2,A2α1=α3,A3α1=-α1. (Ⅰ)证明矩阵A+2E可逆,并求(A+2E)-1; (Ⅱ)如果α1=(1,0,-1)T,α2=(0,1,1)T,α3=(-1,1,1)T,求
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且Aα1=α2,A2α1=α3,A3α1=-α1. (Ⅰ)证明矩阵A+2E可逆,并求(A+2E)-1; (Ⅱ)如果α1=(1,0,-1)T,α2=(0,1,1)T,α3=(-1,1,1)T,求
admin
2020-10-30
26
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且Aα
1
=α
2
,A
2
α
1
=α
3
,A
3
α
1
=-α
1
.
(Ⅰ)证明矩阵A+2E可逆,并求(A+2E)
-1
;
(Ⅱ)如果α
1
=(1,0,-1)
T
,α
2
=(0,1,1)
T
,α
3
=(-1,1,1)
T
,求矩阵A.
选项
答案
(Ⅰ)由已知条件知 A
3
α
1
=-α
1
, A
3
α
2
=A
4
α
1
=A(A
3
α
1
)=-Aα
1
)=-α
2
), A
3
α
3
=A
5
α
1
=A
2
(A
3
α
1
)=-A
2
α
1
=-α
3
,则A
3
(α
1
,α
2
,α
3
)=(A
3
α
1
,A
3
α
2
,A
3
α
3
)=-(α
1
,α
2
,α
3
),记B=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,则矩阵B可逆,于是A
3
B=-B,等式两端右乘B
-1
,得A
3
=-E,故A
3
+8E=7E,即[*] 于是A|2E可逆,且(A+2E)
-1
=[*] (Ⅱ)由已知条件知Aα
1
=α
2
,Aα
2
=A
2
α
1
=α
3
,Aα
3
=A
3
α
1
=-α
1
,从而有A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
2
,α
3
,-α
1
),即[*] 故[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ZDx4777K
0
考研数学三
相关试题推荐
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
设α1,α2,…,αm与β1,β2,…,βS为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βS)一r,则().
已知随机向量(X1,X2)的概率密度为f1(x1,x2),设Y1=2X1,Y2=X2,则随机向量(Y1,Y2)的概率密度为f2(y1,y2)=()
已知随机变量X与Y有相同的不为零的方差,则X与Y相关系数ρ=1的充要条件是
[2004年]二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x2)2的秩为_________.
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
设D是x0y平面上以(1,1),(一1,1)和(一1,一1)为顶点的三角形域,D1是D在第一象限的部分,则等于
当x→0时,ex—(ax2+bx+1)是比x2高阶的无穷小,则()
随机试题
下列关于制冷用润滑油说法错误的是()。
FIDIC合同条件中,合同计价方式只采用单价合同的是()。
营业税在销售商品方面,只限于销售无形资产和不动产两种。()
一般来说,市净率较高的股票,投资价值较高。()
甲公司是一家传统制造业上市公司,只生产A产品。2019年公司准备新上一条生产线,正在进行项目的可行性研究。相关资料如下:(1)如果可行,该生产线拟在2019年初投产,经营周期4年。预计A产品每年销售1000万只,单位售价60元,单位变动制造成本40元,
阅读下面材料,回答问题。一个初一的学生,经常坐爸爸的车外出,每逢堵车或有人超车时,爸爸总是口出不逊张嘴就骂,不是骂警察就是骂别的司机。一天妈妈放学接他,正见他站在校门口对另一个同学口吐狂言:“小子!你给我等着,明天老子收拾你,小兔崽子,敢惹你大爷
个体身心发展有两个高速发展期:新生儿与青春期,这是身心发展()规律的反映。
学校教育
巴枯宁主义
设A1,A2和B是任意事件,且0
最新回复
(
0
)