首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(—1,1,t,4)T,α2=(—2,1,5,t)T,α3=(t,2,10,1)T分别是四阶方阵A的三个不同的特征值对应的特征向量,则( )
已知α1=(—1,1,t,4)T,α2=(—2,1,5,t)T,α3=(t,2,10,1)T分别是四阶方阵A的三个不同的特征值对应的特征向量,则( )
admin
2019-03-23
79
问题
已知α
1
=(—1,1,t,4)
T
,α
2
=(—2,1,5,t)
T
,α
3
=(t,2,10,1)
T
分别是四阶方阵A的三个不同的特征值对应的特征向量,则( )
选项
A、t≠5。
B、t≠—4。
C、t≠—3。
D、t≠—3且t≠—4。
答案
A
解析
因为矩阵的不同特征值对应的特征向量必线性无关,所以R(α
1
,α
2
,α
3
)=3。对矩阵(α
1
,α
2
,α
3
)作初等行变换,即
当t≠5时,R(α
1
,α
2
,α
3
)=3,故选A。
转载请注明原文地址:https://kaotiyun.com/show/ZHV4777K
0
考研数学二
相关试题推荐
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设函数f(x,y)=讨论f(x,y)在(0,0)点的可微性.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
随机试题
甲有件玉器,欲转让,与乙签订合同,约好10日后交货付款;第二天,丙见该玉器,愿以更高的价格购买,甲遂与丙签订合同,丙当即支付了80%的价款,约好3天后交货;第三天,甲又与丁订立合同,将该玉器卖给丁,并当场交付,但丁仅支付了30%的价款。后乙、丙均请求甲履行
男,29岁,腭前部肿胀3个月,X线见腭中线前部一圆形透射区。镜下见衬里上皮为复层鳞状上皮和假复层纤毛柱状上皮。最可能的病理诊断是
国家对安全评价机构实行()
民事诉讼的举证期限( )。
绿茶的制作方法是()。
下列情形不可能发生的是()。
系统故障恢复步骤不包括()。
Somepeoplethinktheycanreadaman’s______fromhishandwriting.
AllthestudentsinMissGao’sclasswereaskedtowritea400-word______aboutAutumn.
Thinktwicenexttimesomeoneasksyoufor"fiveminutesofyourtime"—itcouldcostyoumorethanyouthink.ABritishprofess
最新回复
(
0
)