首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足,r(A)=r=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足,r(A)=r=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
admin
2018-01-23
88
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足,r(A)=r
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无 关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程 组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 (k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构 成的向量组.设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
-β
1
,γ
2
=β
3
-β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性 无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以 AX=b的线性无关的解向量的个数最多为n-r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZNX4777K
0
考研数学三
相关试题推荐
计算积分
设,B是三阶非零矩阵,且BAT=0则秩r(B)=_________.
设f(x)=则f(x)在点x=0处().
设x→0时,ex2一(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c为常数,则().
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
用配方法化二次型f(x,y,z)=x2+2y2+5z2+2xy+6yz+2zx为标准形,并求所用的可逆线性变换.
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,证明:存在ξ∈(a,b),使得
设矩阵A与B相似,且(1)求a,b的值;(2)求可逆矩阵P,使P-1AP=B.
设α1,α2,α3,α4,α5都是四维列向量,A=(α1,α2,α3,α4),非齐次线性方程组Ax=α5有通解kξ+η=k(1,一1,2,0)T+(2,1,0,1)T,则下列关系式中不正确的是()
若向量组α1=(1,1,λ)T,α2=(1,λ,1)T,α3=(λ,1,1)T线性相关,则λ=_______.
随机试题
[*]
格林巴利综合征的发病可能与下列哪种菌的感染有关
患者,女,21岁,头昏胀痛,以两侧为著,心烦易怒,夜寐不宁,口苦面赤,舌红苔黄,脉弦数。治法为
对于饱和砂土和饱和粉土的液化判别,不正确的说法是()。
纳税人在计算企业所得税应纳税所得额时,企业发生的下列项目中,不超过规定比例的部分准予在税前扣除,超过部分,准予在以后纳税年度结转扣除的是()。
一般来说,企业编制的预算具有的作用包括()。
一般资料:张某,女,28岁,在职教师(工作半年),单身,身高1.66米,五官端正。家中有一小2岁的妹妹,父亲为一大专院校教师,母亲为幼儿园教师,父母关系长期不和。从小喜爱读书,成绩优秀,高中毕业考入某重点大学,本科毕业后考研两次,硕士研究生毕业后去外地某中
简述我国的学校系统。
直接经验和间接经验的关系是
AftertheviolentearthquakethatshookLosAngelesin1994,earthquakescientistshadgoodnewstoreport:Thedamageanddeath
最新回复
(
0
)