首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0xf(t)dt=∫0Tf(x)dx; (Ⅲ)若又有f(x)
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0xf(t)dt=∫0Tf(x)dx; (Ⅲ)若又有f(x)
admin
2021-11-09
77
问题
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫
0
x
f(x)dt,求证:
(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;
(Ⅱ)
∫
0
x
f(t)dt=
∫
0
T
f(x)dx;
(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),n为自然数,则当nT≤x<(n+1)T时,有
n∫
0
T
f(x)dx≤∫
0
x
f(t)dt<∫
0
T
(n+1)f(x)dx.
选项
答案
(Ⅰ)即确定常数k,使得φ(x)=F(x)-kx以T为周期.由于 φ(x+T)=F(x+T)-k(x+T)=∫
0
x
f(x)dt-kx+∫
0
x+T
f(t)dt-kT =φ(x)+∫
0
T
f(t)dt-kT, 因此,取k=[*]∫
0
T
f(t)dt,φ(x)=F(x)-kx,则φ(x)是以T为周期的周期函数.此时 F(x)=[ [*]∫
0
T
f(t)dt]x+φ(x). (Ⅱ)不能用洛必达法则.因为[*]不存在,也不为∞.但∫
0
x
(t)dt可表示成 ∫
0
x
(t)dt=[*]∫
0
T
f(t)dt+φ(x). φ(x)在(-∞,+∞)连续且以T为周期,于是,φ(x)在[0,T]有界,在(-∞,+∞)也有界.因此 [*] (Ⅲ)因f(x)≥0,所以当nT≤x<(n+1)T时, n∫
0
T
f(t)dt=∫
0
nT
f(t)≤∫
0
x
f(t)<∫
0
(n+1)T
f(t)dt=(n+1)∫
0
T
f(t)
解析
转载请注明原文地址:https://kaotiyun.com/show/ZSy4777K
0
考研数学二
相关试题推荐
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-l,2,0)T,则β能否由α1,α2,α3线性表示?为什么?
曲线的渐近线的条数为()。
证明:.
设函数y=y(x)由确定,则y=y(x)在x=ln2处的法线方程为________.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
微分方程x2y’+xy=y2满足初始条件y|x=1=3的特解是__________。
已知曲线L的方程为(Ⅰ)讨论L的凹凸性;(Ⅱ)过点(-1,0)引L的切线,求切点(xo,yo),并写出切线的方程;(Ⅲ)求此切线与L(对应于x≤xo的部分)及x轴所围成的平面图形的面积.
设随机变量X与Y相互独立,且X~N(0,1),Y具有分布律P(Y=0)=P(Y=1)=1/2,记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为().
f(x)=∫0xcost/(1+sin2t)dt,求∫0π/2f’(x)/(1+f2(x))dx.
设A=,求:(1)2A11+A12-A13;(2)A11+4A21+A31+2A41.
随机试题
关于影响肺换气的因素的叙述,错误的是
骨盆内测量的测量时间应在
受理申请医师注册的卫生行政部门对不符合条件不予注册的,应当自收到申请之日起多少日内给予申请人书面答复,并说明理由()
某公司2004年6月以出让方式取得一宗位于某市某区某路X号的国有土地使用权,面积为18600m2,用途为工业,已办理土地登记手续。2008年5月,该公司拟以其所使用的国有出让土地作抵押,向某银行申请贷款。为验证该公司土地状况的真实性,降低银行贷款风险,现该
一般事故由项目法人组织()进行调查。
一般资料:求助者,女性,19岁,大学生。下面是心理咨询师与求助者之间的一段咨询对话。心理咨询师:你好!请问我能为你提供什么帮助吗?求助者:我最近总感到紧张,睡不好觉。心理咨询师:你能谈谈是什么事情让你感到紧张,并出现
十七大以来,党对兴起社会主义文化建设新高潮,推动社会主义文化大发展大繁荣作出战略部署。这是基于()。
(2013年真题)简述诽谤罪的构成要件。
电子政务属于下列()类计算机应用。
现在,很多家庭都喜欢在屋子里养一些植物,这确实有很多好处,比如可以使人心情愉快,也可以让空气变得新鲜。但是,其实有些植物并不适合在室内养,它们虽然看上去很好看,却会对人的健康产生不良的影响。因此如果想在家里养一些花的话,最好先上网查一查。★关于
最新回复
(
0
)