首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对x(a≤x≤b)满足 f"(x)+g(x)f’(x)-f(x)=0. 求证:当x∈[a,b]时f(x)≡0.
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对x(a≤x≤b)满足 f"(x)+g(x)f’(x)-f(x)=0. 求证:当x∈[a,b]时f(x)≡0.
admin
2019-02-20
31
问题
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对
x(a≤x≤b)满足
f"(x)+g(x)f’(x)-f(x)=0.
求证:当x∈[a,b]时f(x)≡0.
选项
答案
若f(x)在[a,b]不恒为零,则f(x)在[a,b]取正的最大值或负的最小值. 无妨设[*]则x
0
∈(a,b)且f’(x
0
)=0,f"(x
0
)≤0,从而f"(x
0
)+g(x
0
)f’(x
0
)-f(x
0
)<0,与已知条件矛盾.类似可得若[*]同样与已知条件矛盾.因此当x∈[a,b]时f(x)≡0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZTP4777K
0
考研数学三
相关试题推荐
设随机变量X服从正态分布N(μ2,σ2),其分布函数为F(x),则有()
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设f(x)=,则()
矩阵相似的充分必要条件为
函数f(x)=的间断点及类型是()
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
定积分(sinx+1)dx________.
yy"=1+y’2满足初始条件y(0)=1,y’(0)=0的解为__________.
设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
随机试题
如要终止幻灯片的放映,可直接按_______键。
胰高血糖素和生长抑素在胰岛内对胰岛素分泌的调节属于
根据表中资料,要表达病人年龄构成的特征,宜绘制
刘女士,末次月经日期记不清,来医院检查时子宫底在脐上一横指,胎心音正常。估计妊娠为
建设工程监理文件档案资料管理主要包括( )。
( )时期个人的人生目标应该是积极寻找高薪职位,并努力工作。
在长期内,工资率变动的替代效应和规模效应对劳动力需求的影响是()。
生肖中的龙,还有作为节庆表演节目的舞龙,仍旧保留在全世界的华人生活圈当中,它是华人传统民俗的一部分,而民俗又是十分顽强的文化现象。从动物学的角度来看,世上根本就不存在龙这种动物。远古的恐龙,跟华人崇敬的龙,舞龙舞狮的龙,外形完全不同。龙是古代华夏
第三次科技革命同前两次科技革命相比,突出的不同点是()。
下列问题是基于以下叙述:有关系模式R(A,B,C,D),F={(A,D)→C,C→B}。
最新回复
(
0
)