首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是Ax=b的两个不同的解,α1,α2是相应的齐次方程组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是( ).
已知β1,β2是Ax=b的两个不同的解,α1,α2是相应的齐次方程组Ax=0的基础解系,k1,k2是任意常数,则Ax=b的通解是( ).
admin
2021-07-27
47
问题
已知β
1
,β
2
是Ax=b的两个不同的解,α
1
,α
2
是相应的齐次方程组Ax=0的基础解系,k
1
,k
2
是任意常数,则Ax=b的通解是( ).
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+(β
1
-β
2
)/2
B、k
1
α
1
+k
2
(α
1
-α
2
)+(β
1
+β
2
)/2
C、k
1
α
1
+k
2
(β
1
-β
2
)+(β
1
-β
2
)/2
D、k
1
α
1
+k
2
(β
1
-β
2
)+(β
1
+β
2
)/2
答案
B
解析
(A),(C)中没有非齐次方程组的特解,(D)中两个齐次方程组的解α
1
与β
1
-β
2
是否线性无关未知,而(B)中因α
1
,α
2
是基础解系,故α
1
,α
1
-α
2
仍是基础解系,又(β
1
+β
2
)仍是特解,故(B)是通解.
转载请注明原文地址:https://kaotiyun.com/show/ZTy4777K
0
考研数学二
相关试题推荐
设α1=(1,2,3,1)T,α2=(3,4,7,一1)T,α3=(2,6,a,b)T,α4=(0,1,3,a)T,那么a=8是α1,α2,α3,α4线性相关的()
设n(n≥3)阶矩阵若矩阵A的秩为n—1,则a必为()
设A是n阶矩阵,下列命题错误的是().
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明(1)αa不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
设A=(aij)为3阶非零实矩阵,且已知Aij=aij(其中Aij为aij的代数余子式),i,j=1,2,3.证明:A可逆,并求|A|与A-1.
已知n阶方阵A满足矩阵方程A2-3A-2E=0,其中A给定,而E是单位矩阵,证明A可逆,并求出其逆矩阵A-1.
线性方程组则()
随机试题
端坐呼吸(orthopnea)
患儿,男,8岁,右下后牙遇冷热食物刺激痛3日就诊。检查:右下第一恒磨牙面龋洞,深达牙本质中层,腐质黄软,无叩痛,温度测同对照牙。牙龈无异常。此牙的诊断为
关于屋面刚性防水层施工的做法,正确的有()。
固定资产管理系统需要制单或修改凭证的情况包括资产增加、资产减少、卡片修改、资产评估、原值变动、累计折旧调整、折旧分配等。()
1978年我国居民总消费额约为()亿元。
下列词语中没有错别字的一组是:
用同一试卷对同一批学生重复测试,这是验证试卷____________的方法之一。(中国人民大学2016)
设总体X的密度函数为其中θ>0为未知参数,(X1,X2,…,Xn)为来自总体X的简单随机样本,求参数θ的矩估计量和极大似然估计量.
一个网络协议主要由以下三个要素组成:语法、语义与时序。其中语法规定了哪些信息的结构与格式?Ⅰ.用户数据Ⅱ.服务原语Ⅲ.控制信息Ⅳ.应用程序
Itwasnotaneasyjobforthepolicetofindoutthemurderer,becauseno______hadbeenfoundyet.
最新回复
(
0
)