首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,X是2阶矩阵. (I)求满足AX-XA=O的所有X; (Ⅱ)问AX-XA=E是否有解?其中E是2阶单位矩阵,说明理由.
设A=,X是2阶矩阵. (I)求满足AX-XA=O的所有X; (Ⅱ)问AX-XA=E是否有解?其中E是2阶单位矩阵,说明理由.
admin
2020-12-10
71
问题
设A=
,X是2阶矩阵.
(I)求满足AX-XA=O的所有X;
(Ⅱ)问AX-XA=E是否有解?其中E是2阶单位矩阵,说明理由.
选项
答案
(I)设X=[*],则 [*] 解得x
4
=K,x
3
=3L,x
2
=2L,x
1
=K-3L. 故X=[*],其中K,L是任意常数. (Ⅱ)法一 由(I)知AX-XA=E可写为 [*] 第1个方程和第4个方程是矛盾的,故AX-XA=E无解. 法二 由(I)(*)式易知tr(AX)=tr(XA),故 tr(AX-XA)=tr(AX)-tr(XA)=0≠tr(E)=2. 故方程组AX-XA=E无解.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZW84777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
适当选取函数φ(x),作变量代换y=φ(x)u,将y关于x的微分方程化为u关于x的二阶常系数线性齐次微分方程,求φ(x)及λ并求原方程的通解.
位于上半平面的上凹曲线y=y(χ)过点(0,2),在该点处的切线水平,曲线上任一点(χ,y)处的曲率与及1+y′2之积成反比,比例系数k=,求y=y(χ).
设A是m×n矩阵,B是n阶可逆矩阵,矩阵A的秩为r,矩阵C=AB的秩为r1,则()
设α=(1,1,-1)T是A=的一个特征向量.(Ⅰ)确定参数口,b的值及特征向量口所对应的特征值,(Ⅱ)问A是否可以对角化?说明理由.
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
求微分方程xdy+(x一2y)dx=0的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2以及x轴所围成平面图形绕x轴旋转一周的旋转体体积最小.
设D是由曲线,直线x=a(a>0)及x轴所围成的平面图形,Vx,Vx分别是D绕x轴,y轴旋转一周所得旋转体的体积,若Vy=10Vx,求a的值.
设PQ为抛物线y=的弦,它在此抛物线过P点的法线上,求PQ长度的最小值.
设A是n阶正定矩阵,E是n阶单位矩阵,证明:A+E的行列式大于1.
随机试题
赫尔巴特第一个明确提出了()这一概念,把道德教育与学科知识统一在同一个教学过程中。
速动资产包括()
甲状腺功能减退症最具特征的临床表现是
下列关于内毒素的描述,错误的是
记账凭证上的日期是经济业务发生的日期。()
发行人在确定债券期限时,要考虑多种因素的影响,主要有()。
下列对利率的分类中,不属于同一类别的是()。
以下各项中,()属于汇票的绝对应记载事项。
威尼斯乐派的创始人是()。
ElectricBackpackBackpacks(背包)areconvenient.Theycanholdyourbooks,yourlunch,andachangeofclothes,leavingyour
最新回复
(
0
)